Today, the Earth's axis is tilted 23.5 degrees from the plane of its orbit around the sun. But this tilt changes. During a cycle that averages about 40,000 years, the tilt of the axis varies between 22.1 and 24.5 degrees. Because this tilt changes, the seasons as we know them can become exaggerated. Earth's obliquity may have been reasonably accurately measured as early as 1100 BC in India and China.[11] The ancient Greeks had good measurements of the obliquity since about 350 BC, when Pytheas of Marseilles measured the shadow of a gnomon at the summer solstice.[12] About 830 AD, the Caliph Al-Mamun of Baghdad directed his astronomers to measure the obliquity, and the result was used in the Arab world for many years.[13] In 1437, Ulugh Beg determined the Earth's axial tilt as 23°30′17″ (23.5047°).[14]
It was widely believed, during the Middle Ages, that both precession and Earth's obliquity oscillated around a mean value, with a period of 672 years, an idea known as trepidation of the equinoxes. Perhaps the first to realize this was incorrect (during historic time) was Ibn al-Shatir in the fourteenth century[15] and the first to realize that the obliquity is decreasing at a relatively constant rate was Fracastoro in 1538.[16] The first accurate, modern, western observations of the obliquity were probably those of Tycho Brahe from Denmark, about 1584,[17] although observations by several others, including al-Ma'mun, al-Tusi,[18] Purbach, Regiomontanus, and Walther, could have provided similar information.
Earth's axis remains tilted in the same direction with reference to the background stars throughout a year (regardless of where it is in its orbit). This means that one pole (and the associated hemisphere of Earth) will be directed away from the Sun at one side of the orbit, and half an orbit later (half a year later) this pole will be directed towards the Sun. This is the cause of Earth's seasons. Summer occurs in the Northern hemisphere when the north pole is directed toward the Sun. Variations in Earth's axial tilt can influence the seasons and is likely a factor in long-term climatic change (also see Milankovitch cycles).
Earth's tilted axis causes the seasons. Throughout the year, different parts of Earth receive the Sun's most direct rays. So, when the North Pole tilts toward the Sun, it's summer in the Northern Hemisphere. And when the South Pole tilts toward the Sun, it's winter in the Northern Hemisphere.
As the earth spins on its axis, producing night and day, it also moves about the sun in an elliptical (elongated circle) orbit that requires about 365 1/4 days to complete. The earth's spin axis is tilted with respect to its orbital plane. This is what causes the seasons.Human activity is literally moving Earth's poles. Earth's poles are moving — and that's normal. But new research suggests that within just decades, climate change and human water use have given the poles' wandering an additional nudge.