Answer:
Element wise subtraction.
Step-by-step explanation:
Matrix Subtraction is done element wise.
Therefore, D =
- ![\[ \left[ {\begin{array}{ccc} 5 & 2 & -4\\ 1 & 12 & 3 \\ 11 & 3 & -2 \end{array} } \right]\]](https://tex.z-dn.net/?f=%5C%5B%20%20%5Cleft%5B%20%7B%5Cbegin%7Barray%7D%7Bccc%7D%20%20%205%20%26%202%20%26%20-4%5C%5C%20%20%201%20%26%2012%20%26%203%20%5C%5C%2011%20%26%203%20%26%20-2%20%20%5Cend%7Barray%7D%20%7D%20%5Cright%5D%5C%5D)
This becomes:
![\[ D = \left[ {\begin{array}{ccc} -2 & -1 & 4 \\ -2 & -10 & 1 \\ -2 & 4 & 0 \end{array} } \right]\]](https://tex.z-dn.net/?f=%5C%5B%20%20%20D%20%3D%20%20%5Cleft%5B%20%7B%5Cbegin%7Barray%7D%7Bccc%7D%20%20%20-2%20%26%20-1%20%26%204%20%5C%5C%20%20%20%20-2%20%26%20-10%20%26%201%20%5C%5C%20%20%20%20-2%20%26%204%20%26%200%20%20%5Cend%7Barray%7D%20%7D%20%5Cright%5D%5C%5D)
Now, 





Answer:
A
Step-by-step explanation:
Using the Sine rule in Δ ABC
=
, substitute values
=
( cross- multiply )
BC sin38° = 3 sin66° ( divide both sides by sin38° )
BC =
→ A
<span>x-axis: hours in increments of 1; y-axis: miles in increments of 5
You always want the constant numbers such as time on the x-axis
And since your y values are all large numbers and multiples of 5, it makes sense to use increments of 5</span>
Sorry just getting free points
Answer:
5x=256x
5xy= -xy
(3rd) -2x^2y=4x^2y(1st)
5y=3y
(5th) x^2y^2=(3rd) 2x^2y^2
(6th) 3y^2= 5y^2(5th)
Step-by-step explanation:
Hope you understand. Please mark as the brainliest.