The <em>correct answer</em> is:
Place the point of the compass on the vertex of our original angle. Open the compass to a random width and draw an arc through both legs of the angle. Mark the points of intersection with this arc and the sides of the angle.
Explanation:
In order to copy the angle, we need to have some reference for how wide the angle is.
So far all we have is a ray. To get the reference for the width that we need, we will construct an arc in the original angle such that it intersects each side of the angle.
We will then set the compass width to these points of intersection. This will be how we set the width of the new angle.
Answer:
5
Step-by-step explanation:
9x+6y=-3
9x+6(-8)=-3
9x-48=-3
9x=45
x=5
Answer:
900 degrees
Step-by-step explanation:
Use the formula for interior angles
Sum = (n - 2) x 180
Sum = (7 - 2) x 180
Sum = 5 x 180
Sum = 900 degrees
If this answer is correct, please make me Brainliest!
Answer:
The weight of the water in the pool is approximately 60,000 lb·f
Step-by-step explanation:
The details of the swimming pool are;
The dimensions of the rectangular cross-section of the swimming pool = 10 feet × 20 feet
The depth of the pool = 5 feet
The density of the water in the pool = 60 pounds per cubic foot
From the question, we have;
The weight of the water in Pound force = W = The volume of water in the pool given in ft.³ × The density of water in the pool given in lb/ft.³ × Acceleration due to gravity, g
The volume of water in the pool = Cross-sectional area × Depth
∴ The volume of water in the pool = 10 ft. × 20 ft. × 5 ft. = 1,000 ft.³
Acceleration due to gravity, g ≈ 32.09 ft./s²
∴ W = 1,000 ft.³ × 60 lb/ft.³ × 32.09 ft./s² = 266,196.089 N
266,196.089 N ≈ 60,000 lb·f
The weight of the water in the pool ≈ 60,000 lb·f