Answer:
(a) ΔФ = -0.109W
(b) emf = 28.43V
(c) Iin = emf/R
Explanation:
(a) In order to calculate the magnetic flux you use the following formula:
(1)
B: magnitude of the magnetic field = 1.40T
A: area of the rectangular coil = (0.23m)(0.34m)=0.078m^2
Where it has been taken into account that at the beginning the normal vector to the cross sectional area of the coil, and the magnetic field vector are parallel. When the coil is rotated the vectors are perpendicular.
Then, you obtain:

The change in the magnetic flux is -0.109 W
(b) During the rotation of the coil the emf induced is given by:
(2)
N: turns of the coil = 60
ΔФ: change in the magnetic flux = 0.109W
Δt: lapse time of the rotation = 0.230s
You replace the values of the parameters in the equation (2):

The induced emf is 28.43V
(c) The induced current in the coil is given by:
(3)
R: resistance of the coil (it is necessary to have this value)
emf :induced emf = 28.43V
Answer:
This process is termed galvanisation
Answer:
F = 9.81 [N]
Explanation:
To solve this problem we must use Newton's third le which tells us that the sum of forces on a body that remains static must be equal to one resulting from these forces in the opposite direction.
Let's perform a summation of forces on the vertical axis-y to determine the normal force N.
∑F = 0 (axis-y)

where:
m = mass = 4 [kg]
g = gravity acceleration = 9.81 [m/s²]
![N - (4*9.81)=0\\N = 39.24 [N]](https://tex.z-dn.net/?f=N%20-%20%284%2A9.81%29%3D0%5C%5CN%20%3D%2039.24%20%5BN%5D)
Now we know that the frictional force can be calculated using the following equation.
f = μ*N
where:
f = friction force [N]
μ = friction coefficient = 0.25
N = normal force = 39.24 [N]
Now replacing:
![f = 0.25*39.24\\f = 9.81[N]](https://tex.z-dn.net/?f=f%20%3D%200.25%2A39.24%5C%5Cf%20%3D%209.81%5BN%5D)
Then we perform a sum of forces on the X-axis equal to zero. This sum of forces allows us to determine the minimum force to be able to move the object in a horizontal direction.
∑F = 0 (axis-x)
![F-f=0\\F-9.81=0\\F= 9.81[N]](https://tex.z-dn.net/?f=F-f%3D0%5C%5CF-9.81%3D0%5C%5CF%3D%209.81%5BN%5D)
If the coefficient was smaller, a smaller force (F) would be needed to start the movement, this can be easily seen by replacing the value of 0.25, by smaller values, such as 0.1 or 0.05.
If the coefficient were larger, a larger force would be needed.
Answer:
A. A person would have the same mass, but weigh less.
Explanation:
Remember, even if you weigh less because of a change in gravity's force on your body, your body's mass is still the same.
Answer:
Pretty sure its D.
radiation, chemotherapy, and bone marrow transplant
Explanation: