"F=Vector Sum Of The Two Forces" Is the answer.
The velocity of the ball when it was caught is 12.52 m/s.
<em>"Your question is not complete it seems to be missing the following, information"</em>,
find the velocity of the ball when it was caught.
The given parameters;
maximum height above the ground reached by the ball, H = 38 m
height above the ground where the ball was caught, h = 30 m
The height traveled by the ball when it was caught is calculated as follows;
y = H - h
y = 38 - 30 = 8 m
The velocity of the ball when it was caught is calculated as;

Thus, the velocity of the ball when it was caught is 12.52 m/s.
Learn more here: brainly.com/question/14582703
Answer:
αβ = Ma
Explanation:
By Newton's 2nd Law, the equation governing the motion of the rocket while the rocket is burning fuel is
αβ = Ma where α = rocket's fuel burning rate, β = relative to the velocity of the rocket, M = instantaneous mass of the rocket and a = acceleration of rocket.
F = m • a
What we know:
- Gravity: 9.8 m/s
- Force: 490 N
Equation derived:
m = F/a
m = 490/9.8
= 50 kg
Answer:
A
Explanation:
The answer is A because proton number is the same as atomic number