Terri and Ernesto should both use geographic maps.
may i have brainliest? :D
Answer:
A reduction potential measures the tendency of a molecule to be reduced by taking up new electrons. ... Standard reduction potentials can be useful in determining the directionality of a reaction. The reduction potential of a given species can be considered to be the negative of the oxidation potential.
Explanation:
The volume increases to 1.009 L.
<em>V</em>= <em>V</em>_0 +βΔ<em>T</em>
The thermal expansion coefficient (β) of water changes with temperature, so we must calculate the volume change over small (10 °C) intervals.
20 °C to 30 °C: <em>V</em> = 1 L + 0.000 207 L·°C^(-1) × 10 °C = 1.002 07 L
30 °C to 40 °C: <em>V</em> = 1.002 07 L + 0.000 303 L·°C^(-1)] × 10 °C = 1.005 10 L
40 °C to 50 °C: <em>V</em> = 1.005 10 L + 0.000 385 L·°C^(-1)] × 10 °C = 1.008 95 L
The volume increases by about 9 mL when the temperature increases from 20 °C to 50 °C.