The Oxidation-Fermentation Test is used to differentiate bacteria built on their capability to oxidize or ferment specific sugars.
Once microbes are inoculated,-One tube is sealed with a layer of sterile mineral oil to promote anaerobic growth and fermentation.-The other tube is left unsealed to allow aerobic growth and oxidation.
Organisms able to ferment the carbohydrate or ferment and oxidize the carbohydrate will turn the sealed and unsealed yellow throughout.
Organisms able only to oxidize the sugar will turn the unsealed yellow medium and leave the sealed medium green or blue.
Fragile fermenters will convert both tubes slightly yellow at the top.
Organisms not able to metabolize the sugar will either produce no color change or will turn the medium blue due to alkaline products from amino acids degradation.
Since Pair #1 showed complete yellowing for sealed and unsealed, these Organisms able to ferment the carbohydrate or ferment and oxidize the carbohydrate. So our interpretation will be that the organism has: Oxidation and fermentation OR fermentation only.
For tubes #2 and #3, the sealed tubes were green throughout suggests that they need oxygen for aerobic growth, and the fact that their unsealed tubes showed light yellowing is evidence for oxidation. Sealed - Green and Unseal - Yellow. Our interpretation for these pairs of tubes would be : Oxidation
Tube 1 can be either Oxidation and fermentation OR fermentation only. So reliability of this needs to be confirmed more with additional testing.
Tubes 2 and 3 are most reliable because they can only be oxidation only and no fermentation.
Answer: the functions of the skeleton. Structure, protection (ribs), allow movement, chemical/physiological: stores calcium and the tissues are made up of the same material
Explanation:
The correct answer will be the second one Growth of a tumor
The correct answer is option (d) They allow the exchange of gases between cells in the leaf and the external environment.
Stomata are the tiny openings present in the epidermis (outer layer of cells) of the leaf. They have a pore which is guarded by the guard cells which controls the opening and closing of the stomata. Air enters and exits through the stomata.
The main funtion of stomata is to facilitate the gaseous exchange. The gas exchange that occurs when the stomata are open helps in the process of photosynthesis. During photosynthesis, carbon dioxide is taken in from the atmosphere and oxygen is released as a by-product of photosynthesis. The glucose produced is converted into the starch and stored in the leaves.
Also, water vapour diffuses through the stomata into the atmosphere by a process called the transpiration.
Thus, stomata are the structures that are mainly involved in the gaseous exchange between the cells of the leaf and the atmosphere.