Answer:
x < 33.84
Step-by-step explanation:
we have
13.48x-200 < 256.12
Solve for x
Adds 200 both sides
13.48x-200 +200 < 256.12+200
13.48x < 456.12
Divide by 13.48 both sides
13.48x/13.48 < 456.12/13.48
x < 33.84
The solution is the interval ----> (-∞, 33.84)
All real numbers less than 33.84
Answer:
x = 10°
Step-by-step explanation:
a). Since, opposite angles of a cyclic quadrilateral are supplementary angles"
Therefore, in cyclic quadrilateral ABDE,
m∠ABD + m∠AED = 180°
110° + m∠AED = 180°
m∠AED = 180° - 110°
= 70°
b). AD = ED [Given]
m∠EAD = m∠AED [Since, opposite angles of equal sides are equal in measure]
m∠EAD = m∠AED = 70°
By triangle sum theorem in ΔABD,
m∠BAD + m∠ABD + m∠ADB = 180°
m∠BAD + 110° + 40° = 180°
m∠BAD = 180 - 150
= 30°
m∠AEB = m∠AED + m∠DAB [By angles addition postulate]
m∠AEB = 70° + 30°
= 100°
By triangle sum theorem in the large triangle,
x° + m∠AEB + m∠EAB = 180°
x° + 100° + 70° = 180°
x = 180 - 170
x = 10°
Answer:
Step-by-step explanation:
Since the number of pages that this new toner can print is normally distributed, we would apply the formula for normal distribution which is expressed as
z = (x - µ)/σ
Where
x = the number of pages.
µ = mean
σ = standard deviation
From the information given,
µ = 2300 pages
σ = 150 pages
1)
the probability that this toner can print more than 2100 pages is expressed as
P(x > 2100) = 1 - P(x ≤ 2100)
For x = 2100,
z = (2100 - 2300)/150 = - 1.33
Looking at the normal distribution table, the probability corresponding to the z score is 0.092
P(x > 2100) = 1 - 0.092 = 0.908
2) P(x < 2200)
z = (x - µ)/σ/√n
n = 10
z = (2200 - 2300)/150/√10
z = - 100/47.43 = - 2.12
Looking at the normal distribution table, the probability corresponding to the z score is 0.017
P(x < 2200) = 0.017
3) for underperforming toners, the z score corresponding to the probability value of 3%(0.03) is
- 1.88
Therefore,
- 1.88 = (x - 2300)/150
150 × - 1.88 = x - 2300
- 288 = x - 2300
x = - 288 + 2300
x = 2018
The threshold should be
x < 2018 pages
Answer:
inches
Step-by-step explanation:
So to go from 300 to 3700 you have to multiply by 