1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Snowcat [4.5K]
3 years ago
9

Solve mixture problems. George wishes to increase the percent of acid in 50m / of a 15% acid solution in water to 25% acid, how

much pure acid must you add?
Mathematics
1 answer:
fenix001 [56]3 years ago
7 0

Answer:

x = amount of pure acid to be added = 6.67ml

Step-by-step explanation:

George wishes to increase the percent of acid in 50ml of a 15% acid solution in water to 25% acid, how much pure acid must you add?

let

x = amount of pure acid to be added

15% of 50 + x = 25% of 50 + x

(0.15 * 50) + x = 0.25(50 + x)

7.5 + x = 12.5 + 0.25x

Collect like terms

x - 0.25x = 12.5 - 7.5

0.75x = 5

x = 5/0.75

x = 6.6666666666666

Approximately,

x = 6.67

x = amount of pure acid to be added = 6.67ml

You might be interested in
A+b=180<br> A=-2x+115<br> B=-6x+169<br> What is the value of B?
natulia [17]
The answer is:  " 91 " .   
___________________________________________________
                    →    " B = 91 " .
__________________________________________________ 

Explanation:
__________________________________________________
Given:  
__________________________________________________
    "  A +  B = 180 " ;

  "A =  -2x + 115 " ;   ↔  A =  115 − 2x ;  

  "B = - 6x + 169 " ;  ↔  B = 169 − 6x ;  
_____________________________________________________
METHOD 1)
_____________________________________________________
Solve for "x" ; and then plug the solved value for "x" into the expression given for "B" ; to  solve for "B"
_____________________________________________________

(115 − 2x) + (169 − 6x) = 

  115 − 2x + 169 − 6x = ?

→ Combine the "like terms" ;  as follows:

      + 115 + 169 = + 284 ; 

 − 2x − 6x = − 8x ; 
_________________________________________________________
And rewrite as:

 " − 8x + 284 " ; 
_________________________________________________________
   →  " - 8x + 284 = 180 " ; 

Subtract:  "284" from each side of the equation:

  →  "  - 8x + 284 − 284 = 180 − 284 " ; 

to get:

 →  " -8x = -104 ; 

Divide EACH SIDE of the equation by "-8 " ; 
    to isolate "x" on one side of the equation; & to solve for "x" ; 

→ -8x / -8 = -104/-8 ; 

→  x = 13
__________________________________________________________
Now, to find the value of "B" :
__________________________________________________________
  "B = - 6x + 169 " ;  ↔  B = 169 − 6x ;  

↔  B = 169 − 6x ;  

         = 169 − 6(13) ;   ===========> Plug in our "solved value, "13",  for "x" ;

         = 169 − (78) ; 

         = 91 ;

   B   = " 91 " .
__________________________________________________
The answer is:  " 91 " . 
____________________________________________________
     →     " B = 91 " . 
____________________________________________________
Now;  let us check our answer:
____________________________________________________
               →   A + B = 180 ;  
____________________________________________________
Plug in our "solved answer" ; which is "91", for "B" ;  as follows:
________________________________________________________

→  A + 91 = ? 180? ;  

↔  A = ? 180 − 91 ? ; 

→  A = ?  -89 ?  Yes!
________________________________________________________
→  " A =  -2x + 115 " ;   ↔  A =  115 − 2x ;  

Plug in our solved value for "x"; which is: "13" ; 

" A = 115 − 2x " ; 

→  A = ? 115 − 2(13) ? ;

→  A = ? 115 − (26) ? ; 

→  A = ? 29 ? Yes!
_________________________________________________ 
METHOD 2)
_________________________________________________
Given:  
__________________________________________________
    "  A +  B = 180 " ;

  "A =  -2x + 115 " ;   ↔  A =  115 − 2x ;  

  "B = - 6x + 169 " ;  ↔  B = 169 − 6x ; 

→  Solve for the value of "B" :
_______________________________________________________
 A + B = 180 ;  

→ B = 180 − A ; 

→ B = 180 − (115 − 2x) ; 

→ B = 180 − 1(115 − 2x) ;  ==========> {Note the "implied value of "1" } ; 
__________________________________________________________
Note the "distributive property" of multiplication:__________________________________________________  a(b + c)  = ab +  ac ;  <u><em>AND</em></u>:
  a(b − c)  = ab − ac .________________________________________________________
Let us examine the following part of the problem:
________________________________________________________
              →      " − 1(115 − 2x)  " ; 
________________________________________________________

→  "  − 1(115 − 2x) " = (-1 * 115) − (-1 * 2x) ;

                                =  -115 − (-2x) ;
                         
                                =  -115  +  2x ;        
________________________________________________________
So we can bring down the:  " {"B = 180 " ...}"  portion ; 

→and rewrite:
_____________________________________________________

→  B = 180 − 115 + 2x ; 

→  B = 65 + 2x ; 
_____________________________________________________
Now;  given:   "B = - 6x + 169 " ;  ↔  B = 169 − 6x ; 

→ " B =  169 − 6x  =  65 + 2x " ; 
______________________________________________________
→  " 169 − 6x  =  65 + 2x "

Subtract "65" from each side of the equation;  & Subtract "2x" from each side of the equation:

→  169 − 6x − 65 − 2x  =  65 + 2x − 65 − 2x ; 

to get:

→   " - 8x + 104 = 0 " ;
 
Subtract "104" from each side of the equation:

→   " - 8x + 104 − 104 = 0 − 104 " ;

to get: 

→   " - 8x = - 104 ;

Divide each side of the equation by "-8" ; 
   to isolate "x" on one side of the equation; & to solve for "x" ; 

→  -8x / -8  = -104 / -8 ; 

to get:

→  x =  13 ; 
______________________________________________________

Now, let us solve for:  " B " ;  → {for which this very question/problem asks!} ; 

→  B = 65 + 2x ;  

Plug in our solved value, " 13 ",  for "x" ; 

→ B = 65 + 2(13) ; 

        = 65 + (26) ;  

→ B =  " 91 " .
_______________________________________________________
Also, check our answer:
_______________________________________________________
Given:  "B = - 6x + 169 " ;   ↔  B = 169 − 6x = 91 ; 

When "x  = 13 " ; does: " B = 91 " ? 

→ Plug in our "solved value" of " 13 " for "x" ;

      → to see if:  "B = 91" ; (when "x = 13") ;

→  B = 169 − 6x ; 

         = 169 − 6(13) ; 

         = 169 − (78)______________________________________________________
→ B = " 91 " . 
______________________________________________________
6 0
2 years ago
What is 100,789,388,369,012 times 479,000,000
8_murik_8 [283]

Answer:

4.8278117e+22

Step-by-step explanation:

6 0
3 years ago
Read 2 more answers
A third of a number 9 (number phrase)
lakkis [162]

Answer:

A third of 9 is 3.

Step-by-step explanation:

9 / 3 = 3.

3 * 3 = 9

8 0
2 years ago
Evaluate the expression for x=6<br> 4×+6
alexira [117]

Answer:

30

Step-by-step explanation:

x=6

4 by 6 =24

24 + 6 =30

7 0
3 years ago
Ms wilson surveyed her class of 36 students about their favorite icecream flavors. Two thirds preferred chocolate. One fourth pr
mafiozo [28]
Answer- 9 students preferred vanilla
Hope this Helps! :)
3 0
3 years ago
Read 2 more answers
Other questions:
  • What is the Expected value of the probability distribution also called?
    14·1 answer
  • Can someone help me with these? Thank you so much!
    14·2 answers
  • Three scholars each brought bags of skittles at the store that had exactly the same amount in each. Genesis ate 3/6 of a bag of
    12·1 answer
  • what is the volume of a sphere with a radius of 9.2cm, rounded to the nearest tenth of a cubic centimeter
    15·1 answer
  • The diameter of Circle Q terminates on the circumference of the circle at (3,0) and (-4,0). Write the equation of the circle in
    13·1 answer
  • Help me with this question
    12·1 answer
  • Can someone help me and work it out plzzzz
    7·1 answer
  • The diameter of a baseball is approximately 3 inches. What is its volume? Round your answer to the nearest whole number.
    8·2 answers
  • What is 3 1/2 as a quotient of two integers?
    13·2 answers
  • Which algebraic expression is equivalent to this expression?
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!