Answer:
Step-by-step explanation:
It maybe will be ![\neq x^{2} \leq \\ \\ \int\limits^a_b {x} \, dx \int\limits^a_b {x} \, dx \sqrt{x} \\ \left \{ {{y=2} \atop {x=2}} \right. \left \{ {{y=2} \atop {x=2}} \right. x^{2} x^{2} \sqrt{x} \lim_{n \to \infty} a_n \lim_{n \to \infty} a_n \neq \sqrt{x} \sqrt[n]{x} \frac{x}{y} \frac{x}{y} \alpha \beta x_{123} \\ x^{2} \int\limits^a_b {x} \, dx x^{2}](https://tex.z-dn.net/?f=%5Cneq%20x%5E%7B2%7D%20%5Cleq%20%5C%5C%20%5C%5C%20%5Cint%5Climits%5Ea_b%20%7Bx%7D%20%5C%2C%20dx%20%5Cint%5Climits%5Ea_b%20%7Bx%7D%20%5C%2C%20dx%20%5Csqrt%7Bx%7D%20%5C%5C%20%5Cleft%20%5C%7B%20%7B%7By%3D2%7D%20%5Catop%20%7Bx%3D2%7D%7D%20%5Cright.%20%5Cleft%20%5C%7B%20%7B%7By%3D2%7D%20%5Catop%20%7Bx%3D2%7D%7D%20%5Cright.%20x%5E%7B2%7D%20x%5E%7B2%7D%20%5Csqrt%7Bx%7D%20%20%5Clim_%7Bn%20%5Cto%20%5Cinfty%7D%20a_n%20%20%5Clim_%7Bn%20%5Cto%20%5Cinfty%7D%20a_n%20%5Cneq%20%5Csqrt%7Bx%7D%20%5Csqrt%5Bn%5D%7Bx%7D%20%5Cfrac%7Bx%7D%7By%7D%20%5Cfrac%7Bx%7D%7By%7D%20%5Calpha%20%5Cbeta%20x_%7B123%7D%20%5C%5C%20x%5E%7B2%7D%20%5Cint%5Climits%5Ea_b%20%7Bx%7D%20%5C%2C%20dx%20x%5E%7B2%7D)
7/19, 9/19 11/19
I hope this really helps
basically just add 2 on to the numerator
Answer:
Step-by-step explanation:

Answer:

Step-by-step explanation:
on the picture
if it's helpful ❤❤❤❤
THANK YOU
Answer:
70cm
Step-by-step explanation:
,
Since, both of the tank posses the same quantity of water then there volume is the same thing
For rectangular base
Volume= (Lenght × breadth × hheight)
If we substitute values
Lenght= 80 cm
Breadth= 70 cm
height= 45 cm
Volume= 80cm × 70cm × 45cm
Volume= 252000cm^3
For square base
Volume= (side)^2 × height
side =60cm.
But volume of square base= volume of
rectangular base
252000cm^3= 60^2 × height
Height= (252000cm^3)/(60^2 )
Height= 70 cm
Hence, the second tank is 70 cm deep