1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Nostrana [21]
3 years ago
11

A coffee shop sells refill mugs for $7.50 each. Each coffee refill costs $1.75. Last month, Cody spent $42.50 on a mug and refil

ls. Which equation can you use to find how many refills Cody bought. (Let x = the number of refills)
Mathematics
2 answers:
Advocard [28]3 years ago
7 0
1.75x-7.50=42.50 then you would simplify to find x
Ratling [72]3 years ago
4 0

42. 50 = 7.50x + 1.75

5.43

You might be interested in
PLEASE HELP ME ITS MY LAST QUESTION!!
shepuryov [24]

100 = 10^2

1000 = 10^3

10000 = 10^4

0.1 = 10^(-1)

0.01 = 10^(-2)

0.001 = 10^(-3)

Now,

100 × 0.1 = 10^2 × 10^(-1)

= 10

5 0
3 years ago
Which phrase best describes a scatter plot in which variables are correlated with r=-0.19 ?
AnnZ [28]
The answer to your question is C because it makes sense
4 0
3 years ago
Read 2 more answers
Alaina has $28 in her account.She wants to purchase a pair of shoes that costs $45.If Alaina makes the purchase,which integer wi
ki77a [65]

Answer:

-17

Step-by-step explanation:

28 - 45 = -17$ in her account

5 0
3 years ago
The original price of an iPad is $429. The sale price is 30% off the original price. What is the sale price of the iPad? Show yo
jasenka [17]

Answer:

297.3

Step-by-step explanation:

30% of 429 is 128.7

429 which is the original price - 128.7 which is the price off = 297.3

6 0
3 years ago
Find the area of the region enclosed by the graphs of these equations. (CALCULUS HELP)
sergiy2304 [10]

Answer:

\displaystyle A = \frac{20\sqrt{15}}{3}

General Formulas and Concepts:

<u>Pre-Algebra</u>

Order of Operations: BPEMDAS

  1. Brackets
  2. Parenthesis
  3. Exponents
  4. Multiplication
  5. Division
  6. Addition
  7. Subtraction
  • Left to Right

Equality Properties

  1. Multiplication Property of Equality
  2. Division Property of Equality
  3. Addition Property of Equality
  4. Subtraction Property of Equality

<u>Algebra I</u>

  • Terms/Coefficients
  • Graphing
  • Exponential Rule [Root Rewrite]:                                                                   \displaystyle \sqrt[n]{x} = x^{\frac{1}{n}}

<u>Calculus</u>

Derivatives

Derivative Notation

Derivative of a constant is 0

Basic Power Rule:

  • f(x) = cxⁿ
  • f’(x) = c·nxⁿ⁻¹

Area - Integrals

U-Substitution

Integration Rule [Reverse Power Rule]:                                                               \displaystyle \int {x^n} \, dx = \frac{x^{n + 1}}{n + 1} + C

Integration Property [Multiplied Constant]:                                                         \displaystyle \int {cf(x)} \, dx = c \int {f(x)} \, dx

Integration Property [Addition/Subtraction]:                                                       \displaystyle \int {[f(x) \pm g(x)]} \, dx = \int {f(x)} \, dx \pm \int {g(x)} \, dx

Integration Rule [Fundamental Theorem of Calculus 1]:                                     \displaystyle \int\limits^b_a {f(x)} \, dx = F(b) - F(a)

Area of a Region Formula:                                                                                     \displaystyle A = \int\limits^b_a {[f(x) - g(x)]} \, dx

Step-by-step explanation:

<u>Step 1: Define</u>

F: y = √(15 - x)

G: y = √(15 - 3x)

H: y = 0

<u>Step 2: Find Bounds of Integration</u>

<em>Solve each equation for the x-value for our bounds of integration.</em>

F

  1. Set <em>y</em> = 0:                                                                                                         0 = √(15 - x)
  2. [Equality Property] Square both sides:                                                          0 = 15 - x
  3. [Subtraction Property of Equality] Isolate <em>x</em> term:                                         -x = -15
  4. [Division Property of Equality] Isolate <em>x</em>:                                                        x = 15

G

  1. Set y = 0:                                                                                                         0 = √(15 - 3x)
  2. [Equality Property] Square both sides:                                                          0 = 15 - 3x
  3. [Subtraction Property of Equality] Isolate <em>x</em> term:                                         -3x = -15
  4. [Division Property of Equality] Isolate <em>x</em>:                                                        x = 5

This tells us that our bounds of integration for function F is from 0 to 15 and our bounds of integration for function G is 0 to 5.

We see that we need to subtract function G from function F to get our area of the region (See attachment graph for visual).

<u>Step 3: Find Area of Region</u>

<em>Integration Part 1</em>

  1. Rewrite Area of Region Formula [Integration Property - Subtraction]:     \displaystyle A = \int\limits^b_a {f(x)} \, dx - \int\limits^d_c {g(x)} \, dx
  2. [Integral] Substitute in variables and limits [Area of Region Formula]:     \displaystyle A = \int\limits^{15}_0 {\sqrt{15 - x}} \, dx - \int\limits^5_0 {\sqrt{15 - 3x}} \, dx
  3. [Area] [Integral] Rewrite [Exponential Rule - Root Rewrite]:                       \displaystyle A = \int\limits^{15}_0 {(15 - x)^{\frac{1}{2}}} \, dx - \int\limits^5_0 {(15 - 3x)^{\frac{1}{2}}} \, dx

<u>Step 4: Identify Variables</u>

<em>Set variables for u-substitution for both integrals.</em>

Integral 1:

u = 15 - x

du = -dx

Integral 2:

z = 15 - 3x

dz = -3dx

<u>Step 5: Find Area of Region</u>

<em>Integration Part 2</em>

  1. [Area] Rewrite [Integration Property - Multiplied Constant]:                       \displaystyle A = -\int\limits^{15}_0 {-(15 - x)^{\frac{1}{2}}} \, dx + \frac{1}{3}\int\limits^5_0 {-3(15 - 3x)^{\frac{1}{2}}} \, dx
  2. [Area] U-Substitution:                                                                                   \displaystyle A = -\int\limits^0_{15} {u^{\frac{1}{2}}} \, du + \frac{1}{3}\int\limits^0_{15} {z^{\frac{1}{2}}} \, dz
  3. [Area] Reverse Power Rule:                                                                         \displaystyle A = -(\frac{2u^{\frac{3}{2}}}{3}) \bigg|\limit^0_{15} + \frac{1}{3}(\frac{2z^{\frac{3}{2}}}{3}) \bigg|\limit^0_{15}
  4. [Area] Evaluate [Integration Rule - FTC 1]:                                                   \displaystyle A = -(-10\sqrt{15}) + \frac{1}{3}(-10\sqrt{15})
  5. [Area] Multiply:                                                                                               \displaystyle A = 10\sqrt{15} + \frac{-10\sqrt{15}}{3}
  6. [Area] Add:                                                                                                     \displaystyle A = \frac{20\sqrt{15}}{3}

Topic: AP Calculus AB/BC (Calculus I/II)

Unit: Area Under the Curve - Area of a Region (Integration)

Book: College Calculus 10e

3 0
3 years ago
Other questions:
  • In a carnival game, there are six identical boxes, one of which contains a prize. A contestant wins the prize by selecting the b
    9·1 answer
  • I NEED HELP ASAP!!!!!!! Given the statement -12 ≤ -15, which of the following is correct?
    9·2 answers
  • Please explain in depth what the answer is and how i show work! &lt;3 ;( <br> (picture shown below!)
    14·1 answer
  • Solve using the area model. Check your answer with multiplication. 286 : 22​
    6·1 answer
  • Find the third side in simplest radical form:<br> 28<br> 45
    5·1 answer
  • A fair six-sided die is rolled. Find the probability of getting a 4.​
    15·1 answer
  • Evalvate functions helppp!?
    13·1 answer
  • 1/2 divided by 3 please help me find the answer
    13·1 answer
  • 3 hundreds + 7 hundreds
    8·2 answers
  • 1.Dylan bought 3.5 meters of cloth for 94.5 pesos.How much does 1 meter og the cloth cost?
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!