Answer:
$5,400
Step-by-step explanation:
21/186
Answer: 7/62
Hope this helps!!!!!!!
Answer:
a)5
b)17
c) ?

Step-by-step explanation:
Answer:
Step-by-step explanation:
A circle is inscribed in an equilateral triangle PQR with centre O. If angle OQR = 30°, what is the perimeter of the triangle?
This is a circle inscribed in an equilateral triangle with side s.
If you are asking for the perimeter of PQR, it is 3s.
If you are asking for the perimeter of OQR, it is (3+23–√3)s
Since OR and SR are the hypotenuses of right triangles with adjacent side equal to ½ s, their length is ½s / cos 30° = (√3) /3.
(3/3)s + ((√3) /3)s + ((√3) /3)s = ((3 + 2√3)/3)s ≈ 2.1547s
Hope it helps
help me by marking as brainliest....
Answer:
about 1.56637 radians ≈ 89.746°
Step-by-step explanation:
The reference angle in radians can be found by the formula ...
ref angle = min(mod(θ, π), π -mod(θ, π))
Equivalently, it is ...
ref angle = min(ceiling(θ/π) -θ/π, θ/π -floor(θ/π))×π
<h3>Application</h3>
When we divide 11 radians by π, the result is about 3.501409. The fractional part of this quotient is more than 1/2, so the reference angle will be ...
ref angle = (1 -0.501409)π radians ≈ 1.56637 radians ≈ 89.746°
__
<em>Additional comment</em>
For calculations such as this, you need to use the most accurate value of pi available. The approximations 22/7 or 3.14 are not sufficiently accurate to give good results.