W=mg
<span>Where: </span>
<span>Weight = mass * acceleration due to gravity </span>
<span>So let's say I want to work out my weight on the moon. I know I weigh about 70kg (which would be N), but I can't use that figure for the calculation on the moon. That is what I weigh on Earth, so let's look at the equation... </span>
<span>70kg = mass * 9.81m/s^2 </span>
<span>Where 9.81m/s^2 is the acceleration due to gravity on the surface on the earth. I want to get rid of that, so let's work out my mass by division; </span>
<span>70/9.81 = 7.14kg </span>
<span>I googled the acceleration of gravity on the Moon, which was = 1.6m/s^2 </span>
<span>Let's use that in the same equation W=mg </span>
<span>W = 7.14kg * 1.6m/s^2 = 11.42N
</span><span>On the Moon, you would weigh approximately one sixth of your weight on Earth, so if your bathroom scales tell you you weigh 120 pounds, there you would weigh 20 pounds.
</span>
<span>Moon`s gravitational pull is about one-sixth to the gravitational pull on earth hence weight on moon is about one-sixth of the weight on earth.</span>
Answer:
N/12 -10
Step-by-step explanation:
Answer:
1.732
Step-by-step explanation:
You are given that claims are reported according to a homogeneous Poisson process
LetX be the waiting time from 0 to second claim
X is Poisson with averageof 3 hours.
We know in a Poisson distribution the mean = variance
Hence average waiting time = mean = 3
This will also be equal to var(x)
Var(x) = mean of Poisson distribution= 3
Hence standard deviation = square root of variance
=
Well, the rule of rounding is: if the number is higher than 5, or 5, you round up, and if it is lower than 5, you round down. 5 gets rounded up, so that makes 7 and eight, and eight is higher than 5 so it also gets rounded up, so that would be 6,322. If the decimals were lower, than you would have gotten 6,320, but we rounded up, so 6,322 is the correct answer. Did this help?