Answer:
Precipitation Reactions
They contain two aqueous reactants, one aqueous product, and one solid product. In this reaction, two soluble products, Pb(NO3)2 and KI, combine to form one soluble product, KNO3, and one insoluble product, PbI2. This is a precipitation reaction, and PbI2 is the precipitate.
Answer:
— 159.6°C
Explanation:
Data obtained from the question include:
V1 (initial volume) = 960L
T1 (initial temperature) = 38°C = 38 + 273 = 311K
V2 (final volume) = 350L
T2 (final temperature) =?
Since the pressure is constant, then Charles' law is in operation. Using the Charles' law equation V1/T1 = V2/T2, we can easily obtain the final temperature as follow:
V1/T1 = V2/T2
960/311 = 350/T2
Cross multiply to express in linear form.
960 x T2 = 311 x 350
Divide both side by 960
T2 = (311 x 350) /960
T2 = 113.4K
Now let us convert 113.4K to a number in celsius scale. This is illustrated below:
°C = K — 273
°C = 113.4 — 273
°C = — 159.6°C
Therefore, the container will have a volume of 350L at — 159.6°C
1s^2 2s^2 2p^6 3s^2 2p^3 or the shortcut way is [Ne] 3s^2 2p^3
Answer:
D. The ionic number.
Explanation:
Whenever an element losses or gains an electron; it becomes charged, thus turns to an ion. The ion can either be positively charged when it losses an electron or negarively charged when it gains an electron. The number shows the required number of electrons gained (negative) or lost (positive).