Answer:
In the extracellular space
Explanation:
Disulfide bonds are interconnections between chains (or between parts of a chain) formed by the oxidation of cysteine radicals, this reaction is catalyzed by specific enzymes.
Intracellular proteins have no disulfide bonds, which are more common in proteins secreted into the extracellular environment.
Disulfide bonds do not form in the cytoplasm because there are a lot of reducers in the cytoplasm (intracellular environment) , making the disulfide bonds unstable. The reducing environment of cytoplasm causes disulfide bonds (S-S) to return to the form of cysteine groups (-SH).
Answer:
D. They float on convection currents in the mantle.
Explanation:
Answer:
Enzyme-controlled chemical reactions combining carbon dioxide and glucose water. The photosynthetic rate is affected by the temperature much like any other enzyme-controlled reaction.
Explanation:
At low temperatures, the number of molecular collisions between enzymes and substrates limits the photosynthetic rate. Enzymes are denatured at high temperatures.
Enzymes are protein molecules used in biological reactions by living organisms. The proteins are folded in a very specific form, which enables them to effectively bind to the molecules of interest. The enzymes used for photosynthesis perform less efficiently at a low temperature between 32 and 50 degrees Fahrenheit 0, 10, and 10 degrees Celsius, which lowers the photosynthesis rate.This will lead to lower glucose synthesis and slow growth. In the case of plants in a greenhouse, this is prevented by installing a greenhouse heater and thermostat.
the answer is the last one
D. The heat is there via convection from the sun