-10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Answer:

General Formulas and Concepts:
<u>Pre-Algebra</u>
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
<u>Algebra I</u>
- Slope Formula:

Step-by-step explanation:
<u>Step 1: Define</u>
<em>Find points from graph.</em>
Point (-1, 0)
Point (0, 1)
<u>Step 2: Find slope </u><em><u>m</u></em>
Simply plug in the 2 coordinates into the slope formula to find slope<em> m</em>
- Substitute in points [SF]:

- [Fraction] Simplify:

- [Fraction] Subtract/Add:

- [Fraction] Divide:

Answer:
The value of f(z) is not constant in any neighbourhood of D. The proof is as explained in the explaination.
Step-by-step explanation:
Given
For any given function f(z), it is analytic and not constant throughout a domain D
To Prove
The function f(z) is non-constant constant in the neighbourhood lying in D.
Proof
1-Assume that the value of f(z) is analytic and has a constant throughout some neighbourhood in D which is ω₀
2-Now consider another function F₁(z) where
F₁(z)=f(z)-ω₀
3-As f(z) is analytic throughout D and F₁(z) is a difference of an analytic function and a constant so it is also an analytic function.
4-Assume that the value of F₁(z) is 0 throughout the domain D thus F₁(z)≡0 in domain D.
5-Replacing value of F₁(z) in the above gives:
F₁(z)≡0 in domain D
f(z)-ω₀≡0 in domain D
f(z)≡0+ω₀ in domain D
f(z)≡ω₀ in domain D
So this indicates that the value of f(z) for all values in domain D is a constant ω₀.
This contradicts with the initial given statement, where the value of f(z) is not constant thus the assumption is wrong and the value of f(z) is not constant in any neighbourhood of D.
Answer:
d is the answer
Step-by-step explanation:
They aren't equivalent
<h2>Explanation:</h2>
In order to determine whether the expression:

is equivalent to:

Genevieve needs to follow these steps:
Step 1. Get rid parentheses

Step 2. Combine like terms

Step 3. Solve

So:

Therefore, these two expressions aren't equivalent.
<h2>Learn more:</h2>
Writing expressions: brainly.com/question/13894833#
#LearnWithBrainly