1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Ksivusya [100]
3 years ago
9

What is the equation of the line that is parallel to the y–axis and passes through the point (3, 7)?

Mathematics
2 answers:
zubka84 [21]3 years ago
5 0
The equation of the line would’ve : Y=7x+3

Hope this helps!!
Levart [38]3 years ago
4 0

ANSWER

x = 3

EXPLANATION

If the equation is parallel to the y-axis, then its slope is undefined.

The equation of a line that is parallel to the y-axis and passes through

(x_1,y_1)

is given by:

x = x_1

The given line is parallel to the y-axis and passes through (3,7).

It's equation is

x = 3

You might be interested in
What is the answer to this
LekaFEV [45]
4 \dfrac{3}{5} \times \dfrac{5}{12} =

= \dfrac{23}{5} \times \dfrac{5}{12}

You changed the mixed numeral into a fraction correctly.
Now you need to multiply the fractions.
Multiply the numerators together, and multiply the denominators together.

= \dfrac{23 \times 5}{5 \times 12}

Now we could multiply out the numerator and denominator, and then we'd need to reduce the fraction, but before we multiply, we see there is a factor of 5 both in the numerator and in the denominator, so we can reduce before we multiply.

= \dfrac{23 \times 5}{12 \times 5}

= \dfrac{23}{12}

= 1 \dfrac{11}{12}
6 0
3 years ago
Steve Rogers invested $2400 in an account tht pays 4% compounded continuously and how has $3500. How long did it take Steve's mo
Sedbober [7]

Answer:20years

Step-by-step explanation:

6 0
3 years ago
4 Tan A/1-Tan^4=Tan2A + Sin2A​
Eva8 [605]

tan(2<em>A</em>) + sin(2<em>A</em>) = sin(2<em>A</em>)/cos(2<em>A</em>) + sin(2<em>A</em>)

• rewrite tan = sin/cos

… = 1/cos(2<em>A</em>) (sin(2<em>A</em>) + sin(2<em>A</em>) cos(2<em>A</em>))

• expand the functions of 2<em>A</em> using the double angle identities

… = 2/(2 cos²(<em>A</em>) - 1) (sin(<em>A</em>) cos(<em>A</em>) + sin(<em>A</em>) cos(<em>A</em>) (cos²(<em>A</em>) - sin²(<em>A</em>)))

• factor out sin(<em>A</em>) cos(<em>A</em>)

… = 2 sin(<em>A</em>) cos(<em>A</em>)/(2 cos²(<em>A</em>) - 1) (1 + cos²(<em>A</em>) - sin²(<em>A</em>))

• simplify the last factor using the Pythagorean identity, 1 - sin²(<em>A</em>) = cos²(<em>A</em>)

… = 2 sin(<em>A</em>) cos(<em>A</em>)/(2 cos²(<em>A</em>) - 1) (2 cos²(<em>A</em>))

• rearrange terms in the product

… = 2 sin(<em>A</em>) cos(<em>A</em>) (2 cos²(<em>A</em>))/(2 cos²(<em>A</em>) - 1)

• combine the factors of 2 in the numerator to get 4, and divide through the rightmost product by cos²(<em>A</em>)

… = 4 sin(<em>A</em>) cos(<em>A</em>) / (2 - 1/cos²(<em>A</em>))

• rewrite cos = 1/sec, i.e. sec = 1/cos

… = 4 sin(<em>A</em>) cos(<em>A</em>) / (2 - sec²(<em>A</em>))

• divide through again by cos²(<em>A</em>)

… = (4 sin(<em>A</em>)/cos(<em>A</em>)) / (2/cos²(<em>A</em>) - sec²(<em>A</em>)/cos²(<em>A</em>))

• rewrite sin/cos = tan and 1/cos = sec

… = 4 tan(<em>A</em>) / (2 sec²(<em>A</em>) - sec⁴(<em>A</em>))

• factor out sec²(<em>A</em>) in the denominator

… = 4 tan(<em>A</em>) / (sec²(<em>A</em>) (2 - sec²(<em>A</em>)))

• rewrite using the Pythagorean identity, sec²(<em>A</em>) = 1 + tan²(<em>A</em>)

… = 4 tan(<em>A</em>) / ((1 + tan²(<em>A</em>)) (2 - (1 + tan²(<em>A</em>))))

• simplify

… = 4 tan(<em>A</em>) / ((1 + tan²(<em>A</em>)) (1 - tan²(<em>A</em>)))

• condense the denominator as the difference of squares

… = 4 tan(<em>A</em>) / (1 - tan⁴(<em>A</em>))

(Note that some of these steps are optional or can be done simultaneously)

7 0
3 years ago
PLEASE HELP ASAP!! WILL GIVE POINTS AND MARK BRAINLIEST!!!!!
Korvikt [17]

meme break

⣠⣾⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⠀⠀⠀⠀⣠⣤⣶⣶ ⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⠀⠀⠀⢰⣿⣿⣿⣿ ⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣧⣀⣀⣾⣿⣿⣿⣿ ⣿⣿⣿⣿⣿⡏⠉⠛⢿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⡿⣿ ⣿⣿⣿⣿⣿⣿⠀⠀⠀⠈⠛⢿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⠿⠛⠉⠁⠀⣿ ⣿⣿⣿⣿⣿⣿⣧⡀⠀⠀⠀⠀⠙⠿⠿⠿⠻⠿⠿⠟⠿⠛⠉⠀⠀⠀⠀⠀⣸⣿ ⣿⣿⣿⣿⣿⣿⣿⣷⣄⠀⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⣴⣿⣿ ⣿⣿⣿⣿⣿⣿⣿⣿⣿⠏⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠠⣴⣿⣿⣿⣿ ⣿⣿⣿⣿⣿⣿⣿⣿⡟⠀⠀⢰⣹⡆⠀⠀⠀⠀⠀⠀⣭⣷⠀⠀⠀⠸⣿⣿⣿⣿ ⣿⣿⣿⣿⣿⣿⣿⣿⠃⠀⠀⠈⠉⠀⠀⠤⠄⠀⠀⠀⠉⠁⠀⠀⠀⠀⢿⣿⣿⣿ ⣿⣿⣿⣿⣿⣿⣿⣿⢾⣿⣷⠀⠀⠀⠀⡠⠤⢄⠀⠀⠀⠠⣿⣿⣷⠀⢸⣿⣿⣿ ⣿⣿⣿⣿⣿⣿⣿⣿⡀⠉⠀⠀⠀⠀⠀⢄⠀⢀⠀⠀⠀⠀⠉⠉⠁⠀⠀⣿⣿⣿ ⣿⣿⣿⣿⣿⣿⣿⣿⣧⠀⠀⠀⠀⠀⠀⠀⠈⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢹⣿⣿ ⣿⣿⣿⣿⣿⣿⣿⣿⣿⠃⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢸⣿⣿

6 0
3 years ago
A rectangular picture frame has side lengths of 12 in by 9.5 in what is the length of the diagonal of the picture
OleMash [197]

Answer:

Length of diagonal of picture = 15.30 inches

Step-by-step explanation:

Given that:

Side lengths of picture frame = 12 inches by 9.5 inches

As the picture is rectangular, the diagonal will form hypotenuse of right angled triangle.

Using Pythagorean theorem;

a²+b²=c²

Putting the values in the theorem

(12)^2 + (9.5)^2 = c^2 \\144+90.25=c^2\\c^2 = 234.25

Taking square root on both sides

\sqrt{c^2}=\sqrt{234.25}\\c=15.30

Hence,

Length of diagonal of picture = 15.30 inches

3 0
3 years ago
Other questions:
  • If G-1(x) is the inverse of G(x), what is the value of G-^1(G(x))?
    8·2 answers
  • Dmitri wants to cover the top and sides of the box shown with glass tiles that are 5mm square. How many tiles does he need? ( Th
    7·1 answer
  • $#6 find the value if x. round answer to nearest tenth.
    11·1 answer
  • The amount of time it takes p people to paint d doors varies directly with the number of doors and inversely with the number of
    7·1 answer
  • What is the absolute value of the complex number -4 -√2i ?
    14·2 answers
  • What is equivalent to 8/12
    14·1 answer
  • Leslie is currently 8 years older than Bill in 4 years she will be 2 times as old as Bill. Let x equal Bill's current age
    10·1 answer
  • A small business record its profits for three
    14·1 answer
  • Multiplacation of fractions<br>c solve (3/9) (-2/3) = <br><br>explain​
    13·2 answers
  • Umm please help me wit this problem.
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!