Answer:
111
Step-by-step explanation:
a1 = -12
a27 = 66
Now using the formula an = a1+(n-1)d we will find the value of d
here n = 27
a1 = -12
a27 = 66
Now substitute the values in the formula:
a27 = -12+(27-1)d
66= -12+(26)d
66 = -12+26 * d
66+12 = 26d
78 = 26d
now divide both the sides by 26
78/26= 26d/26
3 = d
Now put all the values in the formula to find the 42 term
an = a1+(n-1)d
a42 = -12 +(42-1)*3
a42 = -12+41 *3
a42 = -12+123
a42 = 111
Therefore 42 term is 111....

It's clear that for x not equal to 4 this function is continuous. So the only question is what happens at 4.
<span>A function, f, is continuous at x = 4 if
</span><span>

</span><span>In notation we write respectively
</span>

Now the second of these is easy, because for x > 4, f(x) = cx + 20. Hence limit as x --> 4+ (i.e., from above, from the right) of f(x) is just <span>4c + 20.
</span>
On the other hand, for x < 4, f(x) = x^2 - c^2. Hence

Thus these two limits, the one from above and below are equal if and only if
4c + 20 = 16 - c²<span>
Or in other words, the limit as x --> 4 of f(x) exists if and only if
4c + 20 = 16 - c</span>²

That is to say, if c = -2, f(x) is continuous at x = 4.
Because f is continuous for all over values of x, it now follows that f is continuous for all real nubmers 
Answer: $42 maybe?
Step-by-step explanation:
Answer:
8.75
Step-by-step explanation: