Answer:
0.315758099469 m
Explanation:
m = Mass of cylinder = 1.5 kg
= Density of water = 1000 kg/m³
V = Volume = Ah
A = Area = 
k = Spring constant = 31 N/m
x = Displacement
g = Acceleration due to gravity = 9.81 m/s²
Here the forces are conserved
Weight of cylinder = Buoyant force + Spring force

The length of the submerged cylinder is 0.315758099469 m
That's the answer: I've attached the pic
Answer:
Explanation:
Let's analyze the situation presented in order to know which answer is correct.
When the stick collides with the puck, it exerts a force for a certain time and discants. / After this time the horizontal force decreases to zero and the disk continues to move by the action of the initial velocity on the x axis and the acceleration of gravity on the y axis.
Therefore, after the collision, the only force that acts on the disk is the gravitational attractive force (WEIGHT), directed on the axis and in a negative direction.
The correct answer is:
C) Since there is no frictional force exerted on the puck, a normal force is not exerted on the puck, but the gravitational force is exerted on the puck
Answer:
13.02 m/s the velocity and 86.92 degrees the direction relative to ground
Explanation:
We need to add velocities in vector addition to find the resultant velocity "
" of the balloon (the 13 m/s and the 0.7 m/s).
The velocities are at 90 degrees from each other (one pointing up and the other to the East). Notice from the attached image that the resultant velocity vector (picture in red) is actually the hypotenuse of a right angle triangle.
So we use Pythagoras to find the length (magnitude) of the resultant velocity vector:

we can round the answer to 13.02 m/s
Now we need to find the angle that this new vector makes with the ground by using the definition of tangent of an angle that relates the two quantities that we just added:

So we round it to 86.92 degrees