Answer:
dJ = 1.7 m
Explanation:
The Equation of the Balancing the moments in the center of the seesaw is like this:
∑Mo = 0
Mo = F*d
Where:
∑Mo : Algebraic sum of moments in the center(o) of the balance
Mo : moment in the o point ( N*m)
F : Force ( N)
d : distancia of the force to the the o point ( N*m)
Data
mA = 60 kg : mass of the Anna
mJ = 70 kg : mass of theJon
dA = 2 m : Distance from Anna to the center of the seesaw
g: acceleration due to gravity
Calculation of the distance from Jon to the center of the seesaw (dJ)
∑Mo = 0 WA : Ana's weight , WJ : Jon's weight
W = m*g
(WA)(dA) - (WJ) (dJ) = 0
(mA*g)(dA) - (mJ*g)(dJ) = 0
We divide by g the equation:
(mA)(dA) - (mJ)(dJ)= 0
(mA)(dA) = (mJ)(dJ)


dJ = 1.7 m
The <span>asthenosphere is under the lithosphere.</span>
I think these gases are water vapor and nitrogen. As the temperature rises, these water vapor molecules, would condense and form the oceans we have. Also, it was said that in the early atmosphere, nitrogen is very abundant and even today the composition of air is 79% by volume.
The net force is 270 N
Explanation:
We can solve this problem by using Newton's second law, which states that the net force on an object is equal to the product between its mass and its acceleration:

where
F is the force
m is the mass
a is the acceleration
In this problem, we have
m = 90.0 kg

Substituting, we find the net force on the object:

Learn more about Newton's second law:
brainly.com/question/3820012
#LearnwithBrainly