Answer:
1.2x10⁻⁵M = Concentration of the product released
Explanation:
Lambert-Beer's law states the absorbance of a solution is directly proportional to its concentration. The equation is:
A = E*b*C
<em>Where A is the absotbance of the solution: 0.216</em>
<em>E is the extinction coefficient = 18000M⁻¹cm⁻¹</em>
<em>b is patelength = 1cm</em>
<em>C is concentration of the solution</em>
<em />
Replacing:
0.216 = 18000M⁻¹cm⁻¹*1cm*C
<h3>1.2x10⁻⁵M = Concentration of the product released</h3>
Hydrogen is a non-polar gas with very weak intermolecular forces of attraction. Hydrogen will deviate from the ideal gas behavior at high pressure.
I don’t know if this is right but I thing It’s B
Answer:
Total pressure = 4.57 atm
Explanation:
Given data:
Partial pressure of nitrogen = 1.3 atm
Partial pressure of oxygen = 1824 mmHg
Partial pressure of carbon dioxide = 247 torr
Partial pressure of argon = 0.015 atm
Partial pressure of water vapor = 53.69 kpa
Total pressure = ?
Solution:
First of all we convert the units other into atm.
Partial pressure of oxygen = 1824 mmHg / 760 = 2.4 atm
Partial pressure of carbon dioxide = 247 torr / 760 = 0.325 atm
Partial pressure of water vapor = 53.69 kpa / 101 = 0.53 atm
Total pressure = Partial pressure of N + Partial pressure of O + Partial pressure of CO₂ + Partial pressure of Ar + Partial pressure of water vapor
Total pressure = 1.3 atm + 2.4 atm + 0.325 atm + 0.015 atm + 0.53 atm
Total pressure = 4.57 atm
Answer:
A. The reaction will proceed forward forming more CH4
B. The reaction will proceed forward forming more CH4
C. Since the reaction is exothermic, raising the temperature will cause the reaction to proceed backward, thus forming C and H2.
D. Lowering the volume makes the gas particles to be more close together thereby enhancing their collisions leading to reaction. Therefore the reaction will proceed forward forming more CH4
E. Catalyst only reduce the activation energy so the reaction can proceed faster. The reaction will proceed forward forming.
F. The following will favour CH4 at equilibrium
i. Catalyst to the reaction mixture,
ii. Both adding more H2 to the reaction mixture and lowering the volume of the reaction mixture
iii. Adding more C to the reaction mixture.