Answer:
Attachment is correct graph.
Step-by-step explanation:
We are given a equation of line y=|x|
It is absolute function which gives always positive value.
It's vertex at (0,0). This function will break at (0,0)
It is linear equality.

So, function is break at point x=0
Now we make tale of x and y
x y
-3 3
-2 2
-1 1
0 0
1 1
2 2
3 3
Now we plot the point on graph and join the points to get graph.
Please see the attachment for correct graph.
Answer:
(-5/2, 5)
Step-by-step explanation:
Apply x-y intercepts theorem
(x,y)=(0,y) and (x,0).
then substitutes.
3/ 1/2 = 6 1 / 1/4 = 4 1/2 / 2 = 1/4
1/3/ 4 = 1/12 2/ 1/6 =12 1/4 /3 = 1/12
Answer: (a) P(no A) = 0.935
(b) P(A and B and C) = 0.0005
(c) P(D or F) = 0.379
(d) P(A or B) = 0.31
Step-by-step explanation: <u>Pareto</u> <u>Chart</u> demonstrates a relationship between two quantities, in a way that a relative change in one results in a change in the other.
The Pareto chart below shows the number of people and which category they qualified each public school.
(a) The probability of a person not giving an A is the difference between total probability (1) and probability of giving an A:
P(no A) = 
P(no A) = 1 - 0.065
P(no A) = 0.935
b) Probability of a grade better than D, is the product of the probabilities of an A, an B and an C:
P(A and B and C) = 
P(A and B and C) = 
P(A and B and C) = 0.0005
c) Probability of an D or an F is the sum of probabilities of an D and of an F:
P(D or F) = 
P(D or F) = 
P(D or F) = 0.379
d) Probability of an A or B is also the sum of probabilities of an A and of an B:
P(A or B) = 
P(A or B) = 
P(A or B) = 0.31
The rigth equation to anticipate the profit after t years is p(t) = 10,000 (1.075)^t
So, given that both store A and store B follow the same equations but t is different for them, you can right:
Store A: pA (t) 10,000 (1.075)^t
Store B: pB(t'): 10,000 (1.075)^t'
=> pA(t) / pB(t') = 1.075^t / 1.075^t'
=> pA(t) / pB(t') = 1.075 ^ (t - t')
And t - t' = 0.5 years
=> pA(t) / pB(t') = 1.075 ^ (0.5) = 1.0368
or pB(t') / pA(t) = 1.075^(-0.5) = 0.964
=> pB(t') ≈ 0.96 * pA(t)
Which means that the profit of the store B is about 96% the profit of store A at any time after both stores have opened.