Answer:
849 items.
Step-by-step explanation:
Given that the profit C (in thousands of dollars) for x thousands of items related as
![C = - 5x ^ 3 + 6x ^ 2 + 15x \\\\\Rightarrow -5x^3+6x^2+15x -C=0\cdots(i)](https://tex.z-dn.net/?f=C%20%3D%20-%205x%20%5E%203%20%2B%206x%20%5E%202%20%2B%2015x%20%5C%5C%5C%5C%5CRightarrow%20-5x%5E3%2B6x%5E2%2B15x%20-C%3D0%5Ccdots%28i%29)
As the profit is $14,000 for producing 2000 items, so
C= 14 thousand dollars and
x= 2 thousand items.
Putting C= 14 in the equation ( we have),
![-5x^3+6x^2+15x -14=0\cdots(ii)](https://tex.z-dn.net/?f=-5x%5E3%2B6x%5E2%2B15x%20-14%3D0%5Ccdots%28ii%29)
Now, x=2 is one of the solutions to the equation (ii), so (x-2) is a factor of the equation (ii), we have
![(x-2)(-5x^2-4x+7)=0 \\\\\Rightarrow x-2=2 \; or \; -5x^2-4x+7=0](https://tex.z-dn.net/?f=%28x-2%29%28-5x%5E2-4x%2B7%29%3D0%20%5C%5C%5C%5C%5CRightarrow%20x-2%3D2%20%5C%3B%20or%20%5C%3B%20-5x%5E2-4x%2B7%3D0)
We have the given solution for x-2=0, so sloving -5x^2-4x+7=0 for other solutions.
![-5x^2-4x+7=0 \\\\\Rightarrow x= \frac {-(-4)\pm \sqrt {(-4)^2-4\times (-5)7}}{2\times (-5)} \\\\\Rightarrow x= \frac {4\pm \sqrt {156}}{2\times (-5)} \\\\\Rightarrow x= \frac {4\pm 12.49}{2\times (-5)} \\\\\Rightarrow x = \frac {4+ 12.49}{2\times (-5)}, \frac {4- 12.49}{2\times (-5)} \\\\\Rightarrow x = -1.649, 0.849](https://tex.z-dn.net/?f=-5x%5E2-4x%2B7%3D0%20%5C%5C%5C%5C%5CRightarrow%20x%3D%20%5Cfrac%20%7B-%28-4%29%5Cpm%20%5Csqrt%20%7B%28-4%29%5E2-4%5Ctimes%20%28-5%297%7D%7D%7B2%5Ctimes%20%28-5%29%7D%20%5C%5C%5C%5C%5CRightarrow%20x%3D%20%5Cfrac%20%7B4%5Cpm%20%5Csqrt%20%7B156%7D%7D%7B2%5Ctimes%20%28-5%29%7D%20%5C%5C%5C%5C%5CRightarrow%20x%3D%20%5Cfrac%20%7B4%5Cpm%2012.49%7D%7B2%5Ctimes%20%28-5%29%7D%20%5C%5C%5C%5C%5CRightarrow%20x%20%3D%20%5Cfrac%20%7B4%2B%2012.49%7D%7B2%5Ctimes%20%28-5%29%7D%2C%20%5Cfrac%20%7B4-%2012.49%7D%7B2%5Ctimes%20%28-5%29%7D%20%5C%5C%5C%5C%5CRightarrow%20x%20%3D%20-1.649%2C%200.849)
As the number of items cant be negative, so x= 0.849 thousand is the other number of items.
Hence, the other number of items for the same profit is 849 items.