Answer:
Stress is the force applied to an object. In geology, stress is the force per unit area that is placed on a rock. Four types of stresses act on materials.
A deeply buried rock is pushed down by the weight of all the material above it. Since the rock cannot move, it cannot deform. This is called confining stress.
Compression squeezes rocks together, causing rocks to fold or fracture (break) (Figure below). Compression is the most common stress at convergent plate boundaries.
Explanation:
Explanation:
we can use the formula F = ma
hence,
500 = 75a
a = 6.666 m/s² or 6(2/3) m/s²
hope this helps.
Answer:
(1) 2.25m/s^2
(2) 45.6m
Explanation:
(1) A car accelerates uniformly from 12m/s to 39m/s in 12 seconds
Therefore the average acceleration can be calculated as follows
a = 39-12/12
a = 27/12
a= 2.25m/s^2
(2) A butterfly is flying at 4m/s , it accelerates uniformly at 1.2 m/s for 6 seconds
u= 4
a= 1.2
t= 6
Therefore the distance can be calculated as follows
S= ut + 1/2at^2
= 4×6 + 1/2 × 1.2 × 6^2
= 24 + 1/2 × 1.2 × 36
= 24 + 1/2 × 43.2
= 24 + 21.6
S = 45.6m
Hence the butterfly travels at 45.6m
Explanation:
It is given that,
Weight of the rock in air, W = 110 N
Since, W = mg


m = 11.22 kg
We need to find the apparent weight of the rock when it is submerged in water. Apparent weight is equal to the weight of liquid displaced i.e.

d is the density of water, 
V is the volume of rock, 

M = 3.37 kg
The apparent weight in water, W = m - M

W = 76.93 N
So, the apparent weight of the rock is 76.93 N. Hence, this is the required solution.
The kinetic energy of an object is given by:

where m is the mass of the object and v its speed. The ball in this problem has a mass of m=0.2 kg and a kinetic energy of K=40 J, so we can rearrange the previous equation to find its speed:
