Answer:
Solution given:
m∠ADB=(4x−12)°
m∠CDB=(3x+6)°
m∠ADC =?
Since diagonal BD bisect the angle <ADC
so
m∠ADB= m∠ADC
(4x-12)°=(3x+6)°
4x-3x=6-12
x=12+6
x=18°
again.
<ADB=m∠ADB+ m∠ADC=4×18-12+3×18+6=120°
So
<u>the m∠</u><u>ADC</u><u> </u><u>=</u><u>1</u><u>2</u><u>0</u><u>°</u>
The standard equation of a circle is given by:
(x-a)²+(y-b)²=r²
where:
(a,b) is the center and r is the radius.
Given that (a,b) is (-8,-3) and r=2 units
then the equation of the circle will be:
(x-(-8))²+(y-(-3))²=2²
simplifying the above we get:
(x+8)²+(y+3)²=4
Answer:
24
Step-by-step explanation:
7 times 7 is 24
The prime factorization for 135 is 3,3,3, and 5.