Answer:
For number one the 3.75 oz container for $9.75 would be the better deal
For number two the answer is 6 1/4
Answer:
The assertion that g(f(x)) is continuous at c is true.
Step-by-step explanation:

is continuous at c

is continuous at 
which is defined as per given data thus g(f(x)) is continuous at x=c
Check the picture below.
![\stackrel{\textit{\Large Areas}}{\stackrel{triangle}{\cfrac{1}{2}(6)(6)}~~ + ~~\stackrel{semi-circle}{\cfrac{1}{2}\pi (3)^2}}\implies \boxed{18+4.5\pi} \\\\[-0.35em] ~\dotfill\\\\ \stackrel{pythagorean~theorem}{CA^2 = AB^2 + BC^2\implies} CA=\sqrt{AB^2 + BC^2} \\\\\\ CA=\sqrt{6^2+6^2}\implies CA=\sqrt{6^2(1+1)}\implies CA=6\sqrt{2} \\\\\\ \stackrel{\textit{\Large Perimeters}}{\stackrel{triangle}{(6+6\sqrt{2})}~~ + ~~\stackrel{semi-circle}{\cfrac{1}{2}2\pi (3)}}\implies \boxed{6+6\sqrt{2}+3\pi}](https://tex.z-dn.net/?f=%5Cstackrel%7B%5Ctextit%7B%5CLarge%20Areas%7D%7D%7B%5Cstackrel%7Btriangle%7D%7B%5Ccfrac%7B1%7D%7B2%7D%286%29%286%29%7D~~%20%2B%20~~%5Cstackrel%7Bsemi-circle%7D%7B%5Ccfrac%7B1%7D%7B2%7D%5Cpi%20%283%29%5E2%7D%7D%5Cimplies%20%5Cboxed%7B18%2B4.5%5Cpi%7D%20%5C%5C%5C%5C%5B-0.35em%5D%20~%5Cdotfill%5C%5C%5C%5C%20%5Cstackrel%7Bpythagorean~theorem%7D%7BCA%5E2%20%3D%20AB%5E2%20%2B%20BC%5E2%5Cimplies%7D%20CA%3D%5Csqrt%7BAB%5E2%20%2B%20BC%5E2%7D%20%5C%5C%5C%5C%5C%5C%20CA%3D%5Csqrt%7B6%5E2%2B6%5E2%7D%5Cimplies%20CA%3D%5Csqrt%7B6%5E2%281%2B1%29%7D%5Cimplies%20CA%3D6%5Csqrt%7B2%7D%20%5C%5C%5C%5C%5C%5C%20%5Cstackrel%7B%5Ctextit%7B%5CLarge%20Perimeters%7D%7D%7B%5Cstackrel%7Btriangle%7D%7B%286%2B6%5Csqrt%7B2%7D%29%7D~~%20%2B%20~~%5Cstackrel%7Bsemi-circle%7D%7B%5Ccfrac%7B1%7D%7B2%7D2%5Cpi%20%283%29%7D%7D%5Cimplies%20%5Cboxed%7B6%2B6%5Csqrt%7B2%7D%2B3%5Cpi%7D)
notice that for the perimeter we didn't include the segment BC, because the perimeter of a figure is simply the outer borders.
Explanation:
The first step is to figure out what the equation is. When unconventional math symbols are used, and when there are no grouping symbols identifying operands, that can be the most difficult step. Here, we think the equation is supposed to be ...
![\sqrt[3]{x+1}-2=0](https://tex.z-dn.net/?f=%5Csqrt%5B3%5D%7Bx%2B1%7D-2%3D0)
It usually works well in radical equations to isolate the radical. Here that would mean adding 2 to both sides of the equation, to undo the subtraction of 2.
![\sqrt[3]{x+1}=2](https://tex.z-dn.net/?f=%5Csqrt%5B3%5D%7Bx%2B1%7D%3D2)
Now, it is convenient to raise both sides of the equation to the 3rd power.

Finally, we can isolate the variable by undoing the addition of 1. We accomplish that by adding -1 to both sides of the equation.

The equation is solved. The solution is x = 7.