The formula for the radius r in terms of x . and for the maximum areas is x=2/
+4
Given that,
y forms a circle of radius r
y=2
r
r=y/2
(2-y)- forms Square Side x
(2-y) = 4x
x=(2-y)/4
Now Sum of Area's=Area of Square +Area of Circle
Sum =
r² + x²
Substitute the r and x values in above equation,
A(y)= y²/4
+(y-2)²/ 16
To maximize Area A(y)
A'(y)= 0
2y/4
+ 2(y-2)/16 =0
y/2
+ (y-2)/8 =0
y = 2
/
+4
Y max will be max, x to be maximum.
for maximum sum of areas,
x=2/
+4
Hence,The formula for the radius r in terms of x . and for the maximum areas is x=2/
+4
Learn more about Area :
brainly.com/question/28642423
#SPJ4
Student b? could you send a full picture
Answer:
5.0 ft - 5.6 ft
Step-by-step explanation:
Given that the structure is to be made using two 12 foot boards, then we expect the total perimeter to be equal to (2*12)= 24 ft.
Using the angle of elevation, 40° and the width of 8 ft then you can apply the formula for tangent of a triangle where ;
Tan α = opposite side length/adjacent length
Tan 40°= h/8
h= 8 tan 40° = 6.71 ft
Applying the cosine of an angle formula to find the length of the sliding side
Cosine β = adjacent length /hypotenuse
Cosine 40°= 8/ sliding side length
sliding side length = 8/cosine 40° =10.44 ft
Checking the perimeter = 10.44 +8+6.71= 25.15 ft
This is more than the total lengths of the boards, so you need to adjust the height as;
24 - 18.44 = 5.56 ft ,thus the height should be less or equal to 5.56 ft
h≤ 5.6 ft
The answer is 3.4, you need to subtract 1.6 from 5.
Answer: B
just make the included side equal