C. 3/4 is the right answer
Answer:
Step-by-step explanation:
We will use 2 coordinates from the table along with the standard form for an exponential function to write the equation that models that data. The standard form for an exponential function is
where x and y are coordinates from the table, a is the initial value, and b is the growth/decay rate. I will use the first 2 coordinates from the table: (0, 3) and (1, 1.5)
Solving first for a:
. Sine anything in the world raised to a power of 0 is 1, we can determine that
a = 3. Using that value along with the x and y from the second coordinate I chose, I can then solve for b:
. Since b to the first is just b:
1.5 = 3b so
b = .5
Filling in our model:

Since the value for b is greater than 0 but less than 1 (in other words a fraction smaller than 1), this table represents a decay function.
The horizontal distance from the firefighter at which the maximum height of water occurs is 10.83m
<u>Explanation:</u>
Given:
h(x) = -0.026x² + 0.563x + 3
where,
h(x) is the height of the water
Initial speed, u = 14m/s
angle, θ = 30°
(a)
Horizontal distance = ?
h(x) = ax² + bx + c
the vertex is found at x = -b/2a
where,
x = distance to the maximum height
As compared to the equation given:
a = -0.026
b = 0.563
Thus,

Therefore, horizontal distance from the firefighter at which the maximum height of water occurs is 10.83m
The sale price S (in dollars) of an item is given by the formula
S=L−rL , where L is the list price (in dollars) and r is the discount rate.
Since, S = L -rL
rL = L -S
r = 
r = 
Since, the listed price of the shirt is $30, we have to find the discount rate.
Therefore, r =
is the discount rate.
D is under multiplication