0.25 in a fraction would be 1/4
5^3(5^x) the rule is a^b(a^c)=a^(b+c)
5^(3+x)
Answer:
(4, -2)
Step-by-step explanation:
Given a point R (-2,5), if the point R' is described by a translation of 6 units to the rights and 7 units down, then the coordinate of R' will be;
6 units to the rights is towards the positive x axis
7 units down is towards the negative y axis
R' = (-2+6, 5-7)
R' = (4, -2)
Hence the coordinate point of R' on the plane is (4, -2)
Answer:
19
Step-by-step explanation:
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
..
.
.
.
..
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
21
Answer:
<em>(-6, 0) and (0, 1.5)</em>
<em></em>
Step-by-step explanation:
The equation of the line in pint slope form is expressed as;
y-y0= m(x-x0)
m is the slope
(x0, y0) is the point on the line
Given
m = 1/4
(x0, y0) = (6,3)
Substitute into the formula;
y - 3 = 1/4(x-6)
4(y-3) = x - 6
4y - 12 = x-6
4y - x = -6+12
4y - x = 6
x = 4y - 6
To get the points to plot, we will find the x and y-intercept of the resulting expression.
For the x-intercept,
at y = 0
x = 4(0) - 6
x = -6
Hence the x-intercept is at (-6, 0)
For the y-intercept,
at x = 0
0 = 4y - 6
4y = 6
y = 6/4
y = 3/2
y = 1.5
Hence the y-intercept is at (0, 1.5)
<em>Hence the required points to plot to get the required line are (-6, 0) and (0, 1.5)</em>
<em></em>