Answer:
60
Step-by-step explanation:
Answer:
1.778 times more or 16/9 times more
Step-by-step explanation:
Given:
- Mirror 1: D_1 = 8''
- Mirror 2: D_2 = 6"
Find:
Compare the light gathering power of an 8" primary mirror with a 6" primary mirror. The 8" mirror has how much light gathering power?
Solution:
- The light gathering power of a mirror (LGP) is proportional to the Area of the objects:
LGP ∝ A
- Whereas, Area is proportional to the squared of the diameter i.e an area of a circle:
A ∝ D^2
- Hence, LGP ∝ D^2
- Now compare the two diameters given:
LGP_1 ∝ (D_1)^2
LGP ∝ (D_2)^2
- Take a ratio of both:
LGP_1/LGP_2 ∝ (D_1)^2 / (D_2)^2
- Plug in the values:
LGP_1/LGP_2 ∝ (8)^2 / (6)^2
- Compute: LGP_1/LGP_2 ∝ 16/9 ≅ 1.778 times more
It’s would be 4/25
Mark as brainliest
Answer:
Missing information.
Step-by-step explanation:
However, the domain is all the x- values. The range is all the y-values (that do not repeat).
So when you look at your graph, find your x values and y-values and write them as set. That is your answer.
1+1 is equal to 3-1. 1+1=2. 3-1=2. 2=2