The value of ∠X = 58.11°, If ΔWXY, the measure of ∠Y=90°, XW = 53, YX = 28, and WY = 45.
Step-by-step explanation:
The given is,
In ΔWXY, ∠Y=90°
XW = 53
YX = 28
WY = 45
Step:1
Ref the attachment,
Given triangle XWY is right angled triangle.
Trigonometric ratio's,
∅
For the given attachment, the trigonometric ratio becomes,
∅
.....................................(1)
Let, ∠X = ∅
Where, XY = 28
XW = 53
Equation (1) becomes,
∅ 
∅ = 0.5283
∅ =
(0.5283)
∅ = 58.109°
Result:
The value of ∠X = 58.11°, If ΔWXY, the measure of ∠Y=90°, XW = 53, YX = 28, and WY = 45.
Let 1st integer = xLet 2nd integer = x + 1 We set up an equation. x(x + 1) = 195 x2 + x = 195 x2 + x - 195 = 0
We will use the quadratic formula: x = (-b ± √(b2 - 4ac) / (2a) x = (-1 ± √(1 - 4(-195))) / 2 x = (-1 ± √(781)) / 2 x = (-1 ± 27.95) / 2 x = 13.48x = -14.78
<span>We determine which value of x when substituted gives us a product of 195.</span> 13.48(14.48) = 195.19-14.48(-13.48) = 195.19 <span>The solution is 2 sets of two consecutive number</span> <span>Set 1</span> The 1st consecutive integer is 13.48The 2nd consecutive integer is 14.48
<span>Set 2</span> The 1st consecutive integer is -14.48The 2nd consecutive integer is -13.48Hopefully this helped, hard work lol :)
Answer:
6 quarters and 6 dimes
Step-by-step explanation:
since there is 6 quarters it would be 6x$.25 which is $1.50, and each dime is worth 10 cents so 6x$.10 is $.60, and $1.50+$.60=$2.10
the number of points a plain contains is 3