Answer: 490 grams of the first alloy should be used.
30 grams of the second alloy should be used.
Step-by-step explanation:
Let x represent the weight of the first alloy in grams that should be used.
Let y represent the weight of the second alloy in grams that should be used.
A chemist has two alloys, one of which is 15% gold and 20% lead. This means that the amount of gold and lead in the first alloy is
0.15x and 0.2x
The second alloy contains 30% gold and 50% lead. This means that the amount of gold and lead in the second alloy is
0.3y and 0.5y
If the alloy to be made contains 82.5 g of gold, it means that
0.15x + 0.3y = 82.5 - - - - - - - - - - - -1
The second alloy would also contain 113 g of lead. This means that
0.2x + 0.5y = 113 - - - - - - - - - - - - -2
Multiplying equation 1 by 0.2 and equation 2 by 0.15, it becomes
0.03x + 0.06y = 16.5
0.03x + 0.075y = 16.95
Subtracting, it becomes
- 0.015y = - 0.45
y = - 0.45/- 0.015
y = 30
Substituting y = 30 into equation 1, it becomes
0.15x + 0.3 × 30 = 82.5
0.15x + 9 = 82.5
0.15x = 82.5 - 9 = 73.5
x = 73.5/0.15
x = 490
4*4-5*3-2x+6= -x-7/2 slope = 2
3 * 3 - 4 *2 -2x +1= - x - 2/2 slope = -2
2 + -2 = 0
Answer:
|-5| is greater than |-2|
Step-by-step explanation:
the absolute value of -5, is 5, which is greater than the absolute value of -2, which is 2. Have a wonderful rest of your day! I hope this helps!
Answer and Step-by-step explanation:
Given Asin(wt + phi), we know that sin (A + B) = sinAcosB + sinBcosA. This means:
Asin(wt + phi) = Asin(wt)cos(phi) + Asin(phi)cos(wt).
Let Acos(phi) = c2 and Asin(phi) = c1 we have:
Asin(wt + phi) = c2sin(wt) + c1cos(wt)