Answer:
bs of rkgwllwqiuwushziuzuahwm of nhi
Answer:
128 units^3
Step-by-step explanation:
![v = \frac{b \times b \times h}{3} = \\ = \frac{8 \times 8 \times 6}{3} = \\ = 128 \: {units}^{3}](https://tex.z-dn.net/?f=v%20%3D%20%20%5Cfrac%7Bb%20%5Ctimes%20b%20%5Ctimes%20h%7D%7B3%7D%20%3D%20%20%5C%5C%20%20%3D%20%20%5Cfrac%7B8%20%5Ctimes%208%20%5Ctimes%206%7D%7B3%7D%20%3D%20%20%5C%5C%20%20%3D%20128%20%5C%3A%20%20%7Bunits%7D%5E%7B3%7D%20%20%20)
Answer:
the dimensions of the most economical shed are height = 10 ft and side 5 ft
Step-by-step explanation:
Given data
volume = 250 cubic feet
base costs = $4 per square foot
material for the roof costs = $6 per square foot
material for the sides costs = $2.50 per square foot
to find out
the dimensions of the most economical shed
solution
let us consider length of side x and height is h
so we can say x²h = 250
and h = 250 / x²
now cost of material = cost of base + cost top + cost 4 side
cost = x²(4) + x²(6) + 4xh (2.5)
cost = 10 x² + 10xh
put here h = 250 / x²
cost = 10 x² + 10x (250/ x² )
cost = 10 x² + (2500/ x )
differentiate and we get
c' = 20 x - 2500 / x²
put c' = 0 solve x
20 x - 2500 / x² = 0
x = 5
so we say one side is 5 ft base
and height is h = 250 / x²
h = 250 / 5²
height = 10 ft
Answer:
g(h(2))= 5
Step-by-step explanation:
h(x)=x^3-3
g(2^3-3)
the 2 replaces the x
simplify
g(5)
B is the right answer for this