Answer:
General Formulas and Concepts:
<u>Pre-Calculus</u>
<u>Calculus</u>
Differentiation
- Derivatives
- Derivative Notation
Integration
- Integrals
- Definite/Indefinite Integrals
- Integration Constant C
Integration Rule [Reverse Power Rule]: 
Integration Rule [Fundamental Theorem of Calculus 1]: 
U-Substitution
- Trigonometric Substitution
Reduction Formula: 
Step-by-step explanation:
<u>Step 1: Define</u>
<em>Identify</em>

<u>Step 2: Integrate Pt. 1</u>
<em>Identify variables for u-substitution (trigonometric substitution).</em>
- Set <em>u</em>:

- [<em>u</em>] Differentiate [Trigonometric Differentiation]:

- Rewrite <em>u</em>:

<u>Step 3: Integrate Pt. 2</u>
- [Integral] Trigonometric Substitution:
![\displaystyle \int\limits^a_b {(1 - x^2)^\Big{\frac{3}{2}}} \, dx = \int\limits^a_b {cos(u)[1 - sin^2(u)]^\Big{\frac{3}{2}} \, du](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cint%5Climits%5Ea_b%20%7B%281%20-%20x%5E2%29%5E%5CBig%7B%5Cfrac%7B3%7D%7B2%7D%7D%7D%20%5C%2C%20dx%20%3D%20%5Cint%5Climits%5Ea_b%20%7Bcos%28u%29%5B1%20-%20sin%5E2%28u%29%5D%5E%5CBig%7B%5Cfrac%7B3%7D%7B2%7D%7D%20%5C%2C%20du)
- [Integrand] Rewrite:
![\displaystyle \int\limits^a_b {(1 - x^2)^\Big{\frac{3}{2}}} \, dx = \int\limits^a_b {cos(u)[cos^2(u)]^\Big{\frac{3}{2}} \, du](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cint%5Climits%5Ea_b%20%7B%281%20-%20x%5E2%29%5E%5CBig%7B%5Cfrac%7B3%7D%7B2%7D%7D%7D%20%5C%2C%20dx%20%3D%20%5Cint%5Climits%5Ea_b%20%7Bcos%28u%29%5Bcos%5E2%28u%29%5D%5E%5CBig%7B%5Cfrac%7B3%7D%7B2%7D%7D%20%5C%2C%20du)
- [Integrand] Simplify:

- [Integral] Reduction Formula:

- [Integral] Simplify:

- [Integral] Reduction Formula:
![\displaystyle \int\limits^a_b {(1 - x^2)^\Big{\frac{3}{2}}} \, dx = \frac{cos^3(u)sin(u)}{4} \bigg|\limits^a_b + \frac{3}{4} \bigg[ \frac{2 - 1}{2}\int\limits^a_b {cos^{2 - 2}(u)} \, du + \frac{cos^{2 - 1}(u)sin(u)}{2} \bigg| \limits^a_b \bigg]](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cint%5Climits%5Ea_b%20%7B%281%20-%20x%5E2%29%5E%5CBig%7B%5Cfrac%7B3%7D%7B2%7D%7D%7D%20%5C%2C%20dx%20%3D%20%5Cfrac%7Bcos%5E3%28u%29sin%28u%29%7D%7B4%7D%20%5Cbigg%7C%5Climits%5Ea_b%20%2B%20%5Cfrac%7B3%7D%7B4%7D%20%5Cbigg%5B%20%5Cfrac%7B2%20-%201%7D%7B2%7D%5Cint%5Climits%5Ea_b%20%7Bcos%5E%7B2%20-%202%7D%28u%29%7D%20%5C%2C%20du%20%2B%20%5Cfrac%7Bcos%5E%7B2%20-%201%7D%28u%29sin%28u%29%7D%7B2%7D%20%5Cbigg%7C%20%5Climits%5Ea_b%20%5Cbigg%5D)
- [Integral] Simplify:
![\displaystyle \int\limits^a_b {(1 - x^2)^\Big{\frac{3}{2}}} \, dx = \frac{cos^3(u)sin(u)}{4} \bigg| \limits^a_b + \frac{3}{4} \bigg[ \frac{1}{2}\int\limits^a_b {} \, du + \frac{cos(u)sin(u)}{2} \bigg| \limits^a_b \bigg]](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cint%5Climits%5Ea_b%20%7B%281%20-%20x%5E2%29%5E%5CBig%7B%5Cfrac%7B3%7D%7B2%7D%7D%7D%20%5C%2C%20dx%20%3D%20%5Cfrac%7Bcos%5E3%28u%29sin%28u%29%7D%7B4%7D%20%5Cbigg%7C%20%5Climits%5Ea_b%20%2B%20%5Cfrac%7B3%7D%7B4%7D%20%5Cbigg%5B%20%5Cfrac%7B1%7D%7B2%7D%5Cint%5Climits%5Ea_b%20%7B%7D%20%5C%2C%20du%20%2B%20%5Cfrac%7Bcos%28u%29sin%28u%29%7D%7B2%7D%20%5Cbigg%7C%20%5Climits%5Ea_b%20%5Cbigg%5D)
- [Integral] Reverse Power Rule:
![\displaystyle \int\limits^a_b {(1 - x^2)^\Big{\frac{3}{2}}} \, dx = \frac{cos^3(u)sin(u)}{4} \bigg| \limits^a_b + \frac{3}{4} \bigg[ \frac{1}{2}(u) \bigg| \limits^a_b + \frac{cos(u)sin(u)}{2} \bigg| \limits^a_b \bigg]](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cint%5Climits%5Ea_b%20%7B%281%20-%20x%5E2%29%5E%5CBig%7B%5Cfrac%7B3%7D%7B2%7D%7D%7D%20%5C%2C%20dx%20%3D%20%5Cfrac%7Bcos%5E3%28u%29sin%28u%29%7D%7B4%7D%20%5Cbigg%7C%20%5Climits%5Ea_b%20%2B%20%5Cfrac%7B3%7D%7B4%7D%20%5Cbigg%5B%20%5Cfrac%7B1%7D%7B2%7D%28u%29%20%5Cbigg%7C%20%5Climits%5Ea_b%20%2B%20%5Cfrac%7Bcos%28u%29sin%28u%29%7D%7B2%7D%20%5Cbigg%7C%20%5Climits%5Ea_b%20%5Cbigg%5D)
- Simplify:

- Back-Substitute:

- Simplify:

- Rewrite:

- Evaluate [Integration Rule - Fundamental Theorem of Calculus 1]:

Topic: AP Calculus AB/BC (Calculus I/I + II)
Unit: Integration
Book: College Calculus 10e

maybe u had to multiply the rate and monthly payment
1+4 = 5
2+5 and add 5 = 12
3+6 and add 12 = 21
4+7+21=32
5+8+32=45
6+9+45=60
7+10+60=77
8+11+77=96
Answer:
15
Step-by-step explanation:
500-60=440
440/30=14.66666667
simplify 14.66666667= 15
First calculate that numeric value. It cannot be done immediately without calculations.
if 85% of studends liked mystery that means that 100% - 85% = 15% didnt like.
Those 15% are 30 that were given in text. Now we can calculate this using proportion:
15% 30 students
85% x students
we use cross multiplication:
15*x = 30*85
x = 30*85/15
x = 170
Answer is 170