Answer:
Step-by-step explanation:
=7 (1+11+111+1111......n)
=7/9 (9+99+999+9999....n)
=7/9 ((10-1)+(10^2-1)+(10^3-1)+....n)
=7/9 ((10+10^2+10^3...n)-(1+1+1+1.....n))
=7/9 ((10 (10^n-1)/(10-1))-n)
Answer:
35.1
Step-by-step explanation:
6.75x5.2=35.1
Answer:
no
Step-by-step explanation:
Answer:
the first one
Step-by-step explanation:
Answer:
Step-by-step explanation:
An eigenvalue of n × n is a function of a scalar
considering that there is a solution (i.e. nontrivial) to an eigenvector x of Ax =
Suppose the matrix ![A = \left[\begin{array}{cc}-1&-1\\2&1\\ \end{array}\right]](https://tex.z-dn.net/?f=A%20%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D-1%26-1%5C%5C2%261%5C%5C%20%5Cend%7Barray%7D%5Cright%5D)
Thus, the equation of the determinant (A -
1) = 0
This implies that:
![\left[\begin{array}{cc}-1-\lambda &-1\\2&1- \lambda\\ \end{array}\right] =0](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D-1-%5Clambda%20%26-1%5C%5C2%261-%20%5Clambda%5C%5C%20%5Cend%7Barray%7D%5Cright%5D%20%3D0)



Hence, the eigenvalues of the equation are 
Also, the eigenvalues can be said to be complex numbers.