1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
const2013 [10]
3 years ago
9

Daria is purchasing a $75 appliance for her kitchen. She has three

Mathematics
1 answer:
AveGali [126]3 years ago
4 0

Answer: coupond 3 offers the best sale price of $60

Step-by-step explanation:

You might be interested in
PLZZ HELPP!! Find the perimeter of the following polygon.
hodyreva [135]

Answer:

43in

Step-by-step explanation:

Perimeter = sum of the sides

Perimeter = 11 + 10 + 10 + 12 = 43

4 0
3 years ago
Read 2 more answers
Hi, how do we do this question?​
Nutka1998 [239]

Answer:

\displaystyle \int {\frac{2x}{3x + 1}} \, dx = \frac{-2(ln|3x + 1| - 3x)}{9} + C

General Formulas and Concepts:

<u>Algebra I</u>

  • Terms/Coefficients
  • Factoring

<u>Algebra II</u>

  • Polynomial Long Division

<u>Calculus</u>

Differentiation

  • Derivatives
  • Derivative Notation

Derivative Property [Multiplied Constant]:                                                           \displaystyle \frac{d}{dx} [cf(x)] = c \cdot f'(x)

Derivative Property [Addition/Subtraction]:                                                         \displaystyle \frac{d}{dx}[f(x) + g(x)] = \frac{d}{dx}[f(x)] + \frac{d}{dx}[g(x)]  

Basic Power Rule:

  1. f(x) = cxⁿ
  2. f’(x) = c·nxⁿ⁻¹

Integration

  • Integrals
  • Integration Constant C
  • Indefinite Integrals

Integration Rule [Reverse Power Rule]:                                                               \displaystyle \int {x^n} \, dx = \frac{x^{n + 1}}{n + 1} + C

Integration Property [Multiplied Constant]:                                                         \displaystyle \int {cf(x)} \, dx = c \int {f(x)} \, dx

Integration Property [Addition/Subtraction]:                                                       \displaystyle \int {[f(x) \pm g(x)]} \, dx = \int {f(x)} \, dx \pm \int {g(x)} \, dx

Logarithmic Integration

U-Substitution

Step-by-step explanation:

*Note:

You could use u-solve instead of rewriting the integrand to integrate this integral.

<u>Step 1: Define</u>

<em>Identify</em>

\displaystyle \int {\frac{2x}{3x + 1}} \, dx

<u>Step 2: Integrate Pt. 1</u>

  1. [Integrand] Rewrite [Polynomial Long Division (See Attachment)]:           \displaystyle \int {\frac{2x}{3x + 1}} \, dx = \int {\bigg( \frac{2}{3} - \frac{2}{3(3x + 1)} \bigg)} \, dx
  2. [Integral] Rewrite [Integration Property - Addition/Subtraction]:               \displaystyle \int {\frac{2x}{3x + 1}} \, dx = \int {\frac{2}{3}} \, dx - \int {\frac{2}{3(3x + 1)}} \, dx
  3. [Integrals] Rewrite [Integration Property - Multiplied Constant]:               \displaystyle \int {\frac{2x}{3x + 1}} \, dx = \frac{2}{3}\int {} \, dx - \frac{2}{3}\int {\frac{1}{3x + 1}} \, dx
  4. [1st Integral] Reverse Power Rule:                                                               \displaystyle \int {\frac{2x}{3x + 1}} \, dx = \frac{2}{3}x - \frac{2}{3}\int {\frac{1}{3x + 1}} \, dx

<u>Step 3: Integrate Pt. 2</u>

<em>Identify variables for u-substitution.</em>

  1. Set <em>u</em>:                                                                                                             \displaystyle u = 3x + 1
  2. [<em>u</em>] Differentiate [Basic Power Rule]:                                                             \displaystyle du = 3 \ dx

<u>Step 4: Integrate Pt. 3</u>

  1. [Integral] Rewrite [Integration Property - Multiplied Constant]:                 \displaystyle \int {\frac{2x}{3x + 1}} \, dx = \frac{2}{3}x - \frac{2}{9}\int {\frac{3}{3x + 1}} \, dx
  2. [Integral] U-Substitution:                                                                               \displaystyle \int {\frac{2x}{3x + 1}} \, dx = \frac{2}{3}x - \frac{2}{9}\int {\frac{1}{u}} \, du
  3. [Integral] Logarithmic Integration:                                                               \displaystyle \int {\frac{2x}{3x + 1}} \, dx = \frac{2}{3}x - \frac{2}{9}ln|u| + C
  4. Back-Substitute:                                                                                            \displaystyle \int {\frac{2x}{3x + 1}} \, dx = \frac{2}{3}x - \frac{2}{9}ln|3x + 1| + C
  5. Factor:                                                                                                           \displaystyle \int {\frac{2x}{3x + 1}} \, dx = -2 \bigg( \frac{1}{9}ln|3x + 1| - \frac{x}{3}  \bigg) + C
  6. Rewrite:                                                                                                         \displaystyle \int {\frac{2x}{3x + 1}} \, dx = \frac{-2(ln|3x + 1| - 3x)}{9} + C

Topic: AP Calculus AB/BC (Calculus I/I + II)

Unit: Integration

Book: College Calculus 10e

8 0
3 years ago
How many circles have a center of (4,7)?
nikklg [1K]
Any circle that can given by

(x-4)^{2}+(y-7)^{2}=r^{2}

have a center of (4,\;7).


You can choose any positive value for the radius r. Hence, there are infinity circles.

6 0
4 years ago
A manufacturer is studying the effects of cooking temperature, cooking time, and type of cooking oilfor making potato chips. Thr
Lera25 [3.4K]

Answer:

(a) The total number of combinations that can be applied for making potato chips is 36.

(b) The number of combinations that will be used for each type of oil is 12.

(c) Permutations are not an issue because order does not matter.

Step-by-step explanation:

The effects of cooking temperature, cooking time and cooking oil is studied for making potato chips.

The number of different temperatures applied is, <em>n</em> (T) = 3.

The number of different times taken is, <em>n</em> (t) = 4.

The number of different oils used is, <em>n</em> (O) = 3.

If an assignment can be done in <em>n</em>₁ ways and if for this assignment another assignment can be done in <em>n</em>₂ ways then these two assignments can be performed in (<em>n</em>₁ × <em>n</em>₂) ways.

(a)

Compute the total number of combinations that can be applied for making potato chips as follows:

Total number of combinations for making chips = n (T) × n (t) × n (O)

                                                                               =3\times4\times 3\\=36

Thus, the total number of combinations that can be applied for making potato chips is 36.

(b)

To make potato chips 4 different temperatures are used and 3 different oils are used.

Each of the oil type is cooked in 4 different temperatures.

So the number of ways to select each oil type is,

<em>n</em> (T) × <em>n</em> (O) = 4\times3=12

Thus, the number of combinations that will be used for each type of oil is 12.

(c)

Permutation is the arrangement of objects in a specified order.

Since in this case ordering of the the three effects, i.e. temperature. time and oil type is not important, permutations are not an issue.

8 0
3 years ago
This is Kristy's recipe for breakfast cereal. 50 grams of oats, 30 grams of raisins, 40 grams of nuts, If she uses 40 grams of o
ipn [44]

Answer

20

Step-by-step explanation:

Because if she uses only 40 instead of 50 she just subtracting 10.

7 0
3 years ago
Other questions:
  • -6f+13=2f-11
    15·2 answers
  • What is the area of the rhombus shown below? MK=13 JL= 17
    9·1 answer
  • At What point do the graphs of y=x2 + 3x -5 and y=4x + 1 intersect
    5·1 answer
  • 52 is the sum of 23 and v translate into equation
    14·1 answer
  • YOOOO HELP ME ASAP DUDED BY MIDNIGHT BRO
    12·1 answer
  • For brainliest please help!
    11·1 answer
  • Fun question!
    10·2 answers
  • PLEASE HELP I DONT UNDERSTAND I WILL GIVE EXTRA POINTS IF ITS RIGHT!!!!!!!!!!!!
    15·1 answer
  • What is the least common multiple of 2 and 11? Enter your answer in the box.
    15·1 answer
  • Show all your work multiplying the polynomials above:
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!