Answer:
hiiiiiiiiiiiiiiiiiiiiiiiii THANK YOU SO MUCH FOR THE POINT
Answer: The concentrations of
at equilibrium is 0.023 M
Explanation:
Moles of
= 
Volume of solution = 1 L
Initial concentration of
= 
The given balanced equilibrium reaction is,

Initial conc. 0.14 M 0 M 0M
At eqm. conc. (0.14-x) M (x) M (x) M
The expression for equilibrium constant for this reaction will be,
![K_c=\frac{[CO]\times [Cl_2]}{[COCl_2]}](https://tex.z-dn.net/?f=K_c%3D%5Cfrac%7B%5BCO%5D%5Ctimes%20%5BCl_2%5D%7D%7B%5BCOCl_2%5D%7D)
Now put all the given values in this expression, we get :

By solving the term 'x', we get :
x = 0.023 M
Thus, the concentrations of
at equilibrium is 0.023 M
You got the answer correct. If you would double check
given:C (12 g/mol) H (1 g/mol).
12(8) + 1(8) = 104 g/mol
and for C2H4
12(2)+1(4) = 28g/mol
Also, chemical formula of styrene is<span> C6H5CH=CH2.</span>
Answer:
Vapour pressure of benzene over the solution is 253 torr
Explanation:
According to Raoult's law for a mixture of two liquid component A and B-
vapour pressure of a component (A) in solution = 
vapour pressure of a component (B) in solution = 
Where
are mole fraction of component A and B in solution respectively
are vapour pressure of pure A and pure B respectively
Here mole fraction of benzene in solution is 0.340 and vapour pressure of pure benzene is 745 torr
So, vapour pressure of benzene in solution = 
= 253 torr
Stars on the main sequence fuse hydrogen into helium via a six-stage sequence of reactions