Answer:
The electronic configuration that are incorrectly written is 1s²2s³2p⁶, 4s²3d¹⁰4p⁷, 3s¹ and 2s²2p⁴.
Explanation:
The electronic configuration of the elements corresponds to how all the electrons of an element are arranged in energy levels and sub-levels.
There are 7 energy levels —from 1 to 7— whose sublevels are described as s, p, d and f.
All electronic configurations begin with the term "1s" —corresponding to the sublevel s of level 1— so 4s²3d¹⁰4p⁷, 3s¹ and 2s²2p⁴ are incorrectly written. In addition, 4s²3d¹⁰4p⁷ is written incorrectly because is impossible to jump from the sublevel "s" to the sublevel "d" —which is found from level 3 and up— without passing through the sublevel "p".
In the case of 1s²2s³2p⁶, the wrong thing is that the sublevel "s" can only hold two electrons, not three.
The other options are correctly written.
Answer:
30.8 g of water are produced
Explanation:
First of all we need the equation for the production of water:
2H₂ + O₂ → 2H₂O
2 moles of hydrogen react with 1 mol of oxygen in order to produce 2 moles of water.
As we assume, the oxygen in excess, we determine the moles of H₂.
1.03ₓ10²⁴ molecules . 1 mol/ 6.02ₓ10²³ molecules = 1.71 moles
Ratio is 2:2, so 1.71 moles will produce 1.71 moles of water
Let's convert the moles to mass: 1.71 mol . 18g / 1mol = 30.8 g of water are produced
A Bunsen burner, named after Robert Bunsen, is a common piece of laboratory equipment that produces a single open gas flame, which is used for heating, sterilization, and combustion. The gas can be natural gas (which is mainly methane) or a liquefied petroleum gas, such as propane, butane, or a mixture of both. Have A Great Day :)
Explanation:
tala it is also called myopia lekhnu hai
Äni Arko MA it is also called hypermetropia .
Answer:
1.4 × 10^-4 M
Explanation:
The balanced redox reaction equation is shown below;
5Fe2+ + MnO4- + 8H+ --> 5Fe3+ +Mn2+ + 4H2O
Molar mass of FeSO4(NH4)2SO4*6H2O = 392 g/mol
Number of moles Fe^2+ in FeSO4(NH4)2SO4*6H2O = 3.47g/392g/mol = 8.85 × 10^-5 moles
Concentration of Fe^2+ = 8.85 × 10^-5 moles × 1000/200 = 4.425 × 10^-4 M
Let CA be concentration of Fe^2+ = 4.425 × 10^-4 M
Volume of Fe^2+ (VA)= 20.0 ml
Let the concentration of MnO4^- be CB (the unknown)
Volume of the MnO4^- (VB) = 12.6 ml
Let the number of moles of Fe^2+ be NA= 5 moles
Let the number of moles of MnO4^- be NB = 1 mole
From;
CAVA/CBVB = NA/NB
CAVANB = CBVBNA
CB= CAVANB/VBNA
CB= 4.425 × 10^-4 × 20 × 1/12.6 × 5
CB = 1.4 × 10^-4 M