Answer:
The following three isomeric structure are given below.
Explanation:
Structure of the following three isomeric esters with chemical formula C₇H₁₂O₂
Ester #1: methyl 1-methylcyclobutanecarboxylate
Ester #2: (E)-methyl 3-methyl-3-pentenoate
Ester #3: isopropyl 2-methylpropenoate
Answer:
Explanation:
What would the answer be?
Answer:
1-Pentene
Explanation:
If we look at all the options listed, we will notice that the rate of reaction of bromine with each one differs significantly.
For 1-pentene, addition of bromine across the double bond is a relatively fast process. It is usually used as a test for unsaturation. Bromine water is easily decolorized by alkenes.
Cyclohexane, heptane are alkanes. They can only react with chlorine in the presence of sunlight. This is a substitution reaction. It does not occur easily. A certain quantum of light is required for the reaction to occur.
For benzene, bromine can only react with it by electrophilic substitution in which the benzene ring is retained. A Lewis acid is often required for the reaction to occur and it doesn't occur easily.
<u>Answer:</u> The hydroxide ion concentration and pOH of the solution is
and 2.88 respectively
<u>Explanation:</u>
We are given:
Concentration of barium hydroxide = 0.00066 M
The chemical equation for the dissociation of barium hydroxide follows:

1 mole of barium hydroxide produces 1 mole of barium ions and 2 moles of hydroxide ions
pOH is defined as the negative logarithm of hydroxide ion concentration present in the solution
To calculate pOH of the solution, we use the equation:
![pOH=-\log[OH^-]](https://tex.z-dn.net/?f=pOH%3D-%5Clog%5BOH%5E-%5D)
We are given:
![[OH^-]=(2\times 0.00066)=1.32\times 10^{-3}M](https://tex.z-dn.net/?f=%5BOH%5E-%5D%3D%282%5Ctimes%200.00066%29%3D1.32%5Ctimes%2010%5E%7B-3%7DM)
Putting values in above equation, we get:

Hence, the hydroxide ion concentration and pOH of the solution is
and 2.88 respectively