Answer: 2
Step-by-step explanation:
All you need to do is plug in 3 for x
2(3)-4
6-4
=2
If the area of the region bounded by the curve
and the line
is
Sq units, then the value of
will be
.
<h3>What is area of the region bounded by the curve ?</h3>
An area bounded by two curves is the area under the smaller curve subtracted from the area under the larger curve. This will get you the difference, or the area between the two curves.
Area bounded by the curve
We have,
⇒ 
,
Area of the region
Sq units
Now comparing both given equation to get the intersection between points;

So,
Area bounded by the curve
![\frac{256}{3} =\[ \int_{0}^{4a} \sqrt{4ax} \,dx \]](https://tex.z-dn.net/?f=%5Cfrac%7B256%7D%7B3%7D%20%3D%5C%5B%20%20%5Cint_%7B0%7D%5E%7B4a%7D%20%5Csqrt%7B4ax%7D%20%20%5C%2Cdx%20%5C%5D)
![\frac{256}{3}= \[\sqrt{4a} \int_{0}^{4a} \sqrt{x} \,dx \]](https://tex.z-dn.net/?f=%5Cfrac%7B256%7D%7B3%7D%3D%20%20%20%5C%5B%5Csqrt%7B4a%7D%20%20%5Cint_%7B0%7D%5E%7B4a%7D%20%5Csqrt%7Bx%7D%20%20%5C%2Cdx%20%5C%5D)
![\frac{256}{3}= 2\sqrt{a} \left[\begin{array}{ccc}\frac{(x)^{\frac{1}{2}+1 } }{\frac{1}{2}+1 }\end{array}\right] _{0}^{4a}](https://tex.z-dn.net/?f=%5Cfrac%7B256%7D%7B3%7D%3D%202%5Csqrt%7Ba%7D%20%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D%5Cfrac%7B%28x%29%5E%7B%5Cfrac%7B1%7D%7B2%7D%2B1%20%7D%20%7D%7B%5Cfrac%7B1%7D%7B2%7D%2B1%20%7D%5Cend%7Barray%7D%5Cright%5D%20_%7B0%7D%5E%7B4a%7D)
![\frac{256}{3}= 2\sqrt{a} \left[\begin{array}{ccc}\frac{(x)^{\frac{3}{2} } }{\frac{3}{2} }\end{array}\right] _{0}^{4a}](https://tex.z-dn.net/?f=%5Cfrac%7B256%7D%7B3%7D%3D%202%5Csqrt%7Ba%7D%20%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D%5Cfrac%7B%28x%29%5E%7B%5Cfrac%7B3%7D%7B2%7D%20%7D%20%7D%7B%5Cfrac%7B3%7D%7B2%7D%20%7D%5Cend%7Barray%7D%5Cright%5D%20_%7B0%7D%5E%7B4a%7D)
![\frac{256}{3}= 2\sqrt{a} *\frac{2}{3} \left[\begin{array}{ccc}(x)^{\frac{3}{2}\end{array}\right] _{0}^{4a}](https://tex.z-dn.net/?f=%5Cfrac%7B256%7D%7B3%7D%3D%202%5Csqrt%7Ba%7D%20%2A%5Cfrac%7B2%7D%7B3%7D%20%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D%28x%29%5E%7B%5Cfrac%7B3%7D%7B2%7D%5Cend%7Barray%7D%5Cright%5D%20_%7B0%7D%5E%7B4a%7D)
On applying the limits we get;
![\frac{256}{3}= \frac{4}{3} \sqrt{a} \left[\begin{array}{ccc}(4a)^{\frac{3}{2} \end{array}\right]](https://tex.z-dn.net/?f=%5Cfrac%7B256%7D%7B3%7D%3D%20%5Cfrac%7B4%7D%7B3%7D%20%5Csqrt%7Ba%7D%20%20%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D%284a%29%5E%7B%5Cfrac%7B3%7D%7B2%7D%20%20%5Cend%7Barray%7D%5Cright%5D)



⇒ 

Hence, we can say that if the area of the region bounded by the curve
and the line
is
Sq units, then the value of
will be
.
To know more about Area bounded by the curve click here
brainly.com/question/13252576
#SPJ2
Answer:
36.7 ft
Step-by-step explanation:
Measurements for the sides of the canal is given as: 40 ft. and 16 ft.
You solve the above question using Pythagoras Theorem
The distance across the canal is calculated as:
√(40² - 16²)
= √(1344)
= 36.66060556 ft
Approximately = 36.7 ft
Therefore, the distance x across the canal = 36.7 ft
Answer:
(-2,0)
Step-by-step explanation:
To find the x intercept, set y =0 and solve for x
9x+3y = -18
9x +0 = -18
9x/9 = -18/9
x = -2
(-2,0)