The value of p+q = 403,For the given complex number a+bi and
where p and q are co-primes
F(z)= (a+ib)z⇒this is equidistant from "0" and "z"
Given modulus of complex number (a+ib) = 10 ;
p and q ∈Z
G.C.D of ( p and q)=1
(a+ib)z equidistant from "0" and "z"


p = 399 and q= 4
p+q= 399+4
p+q=403
Hence the value of p+q = 403
Complete question:A function f is defined on the complex number by f (z) = (a + bi)z, where 'a' and 'b' are positive numbers. This function has the property that the image of each point in the complex plane is equidistant from that point and the origin. Given that |a+bi|=8 and that
where p and q are coprime. Find the value of (p+q)
Learn more about complex numbers here:
brainly.com/question/20566728
#SPJ4
Answer:
The number of newborns who weighed between 1614 grams and 5182 grams was of 586.
Step-by-step explanation:
Normal Probability Distribution
Problems of normal distributions can be solved using the z-score formula.
In a set with mean
and standard deviation
, the z-score of a measure X is given by:

The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the p-value, we get the probability that the value of the measure is greater than X.
The mean weight was 3398 grams with a standard deviation of 892 grams.
This means that 
Proportion that weighed between 1614 and 5182 grams:
p-value of Z when X = 5182 subtracted by the p-value of Z when X = 1614.
X = 5182



has a p-value of 0.9772
X = 1614



has a p-value of 0.0228
0.9772 - 0.0228 = 0.9544.
Out of 614 babies:
0.9544*614 = 586
The number of newborns who weighed between 1614 grams and 5182 grams was of 586.
Each with 220 sides,meaning 440 edges on the end
Answer:
√112
Step-by-step explanation:
a^2+b^2=c^2
3^2+b^2=11^2
9+b^2=121
b^2=121-9
b^2=112
b=√112
Mark me as brainliest