Given:
The given function is:

The graph of the function is given.
To find:
The end behavior of the given function.
Solution:
We have,

From the given graph it is clear that the function approaches to -4 at x approaches negative infinite and the function approaches to negative infinite at x approaches infinite.
as 
as 
Therefore, the end behaviors of the given function are:
as 
as 
let's firstly convert the mixed fractions to improper fractions and then divide.
![\bf \stackrel{mixed}{1\frac{1}{4}}\implies \cfrac{1\cdot 4+1}{4}\implies \stackrel{improper}{\cfrac{5}{4}}~\hfill \stackrel{mixed}{3\frac{4}{5}}\implies \cfrac{3\cdot 5+4}{5}\implies \stackrel{improper}{\cfrac{19}{5}} \\\\[-0.35em] ~\dotfill\\\\ \cfrac{5}{4}\div\cfrac{19}{5}\implies \cfrac{5}{4}\cdot \cfrac{5}{19}\implies \cfrac{25}{76}](https://tex.z-dn.net/?f=%5Cbf%20%5Cstackrel%7Bmixed%7D%7B1%5Cfrac%7B1%7D%7B4%7D%7D%5Cimplies%20%5Ccfrac%7B1%5Ccdot%204%2B1%7D%7B4%7D%5Cimplies%20%5Cstackrel%7Bimproper%7D%7B%5Ccfrac%7B5%7D%7B4%7D%7D~%5Chfill%20%5Cstackrel%7Bmixed%7D%7B3%5Cfrac%7B4%7D%7B5%7D%7D%5Cimplies%20%5Ccfrac%7B3%5Ccdot%205%2B4%7D%7B5%7D%5Cimplies%20%5Cstackrel%7Bimproper%7D%7B%5Ccfrac%7B19%7D%7B5%7D%7D%20%5C%5C%5C%5C%5B-0.35em%5D%20~%5Cdotfill%5C%5C%5C%5C%20%5Ccfrac%7B5%7D%7B4%7D%5Cdiv%5Ccfrac%7B19%7D%7B5%7D%5Cimplies%20%5Ccfrac%7B5%7D%7B4%7D%5Ccdot%20%5Ccfrac%7B5%7D%7B19%7D%5Cimplies%20%5Ccfrac%7B25%7D%7B76%7D)
Answer: 28 dots
Step-by-step explanation: In this pattern,
we can see the the first figure is just 1 dot.
The second figure has a new row on the bottom with 2 dots.
The third figure has a new row on the bottom with 3 dots
and the fourth figure has a new row on the bottom with 4 dots.
So continuing with this pattern,
the next figure will have a new row with 5 dots,
the next will have a new row with 6 dots,
and the next will have a new row with 7 dots.
So in the 7th picture, we will have 7 + 6 + 5 + 4 + 3 + 2 + 1 dots.
This simplifies to 28 dots.
Take a look below.
Answer:
Step-by-step explanation:
EH=w
then it is as simple as pluggin in
gh=4(eh)-51