Answer:
3.29 M
Explanation:
Molarity refers to the molar concentration of a solution and it can be calculated using the formula below:
Molarity (M) = number of moles (n) ÷ volume (V)
According to this question, the mass of HCl was given to be 60.4 grams and the volume of water as 505 mL.
Using mole = mass/molar mass to convert mass of HCl to moles
Molar mass of HCl = 1.0079 + 35.453 = 36.4609g/mol
mole = 60.4g ÷ 36.4609g/mol
mole = 1.66mol
Volume of water = 505mL = 505/1000 = 0.505L
Molarity, M = 1.66 ÷ 0.505
Molarity of HCl solution = 3.29 M
I would say the answer is C. Mutualism
Answer:
1) Since you have not provided the equations to select the right one, I am going to explain you the relevant facts that are used to solve this question.
2) The transuranium elements are the chemiical elements with atomic number greater than that of the uranium.
The atomic number of uranium is 92. So, the transuranium elements are the elements with atomic number 93 or greater.
This are some of the transuranium elements:
Neptunio - 93
Plutonium - 94
Americium - 95
Curium - 96
Berkelium - 97
Californium - 98
Einstenium - 99
And so all the known elements (the last one is the 118).
3) In a nuclear reaction the total mass number ( shown as superscript to the left of the symbol) and total atomic number (shown as subscript to the left of the symbol) are conserved.
4) Beta decay is the release of a beta particle, which is an electron (considered massles and with charge - 1). So, the beta decay is represented with the symbol:
0
β, which means 0 mass and charge - 1.
-1
5) This is, then, an example of a β decay equation for one transuranium element:
239 239 0
Np → Pu + β
93 94 -1
As you see 239 = 239 + 0 and 93 = 94 - 1, showing that the total mass number ( shown as superscript to the left of the symbol) and the total atomic number (shown as subscript to the left of the symbol) are conserved.
Explanation:
Answer:
A. 1 liter of water at temperature 75°C
Explanation:
According to kinetic molecular theory average kinetic energy of molecules are directly proportional to absolute temperature.
the quantity of the sample does't depend on kinetic energy only temperature
does so the choice with highest temperature is the correct choice
∵ 1 liter water at 75°C has highest average kinetic energy per molecule