Air is mainly composed of N2 (78%), O2 (21%) and other trace gases. Now, the total pressure of air is the sum of the partial pressures of the constituent gases. The partial pressure of each gas, for example say O2, can be expressed as:
p(O2) = mole fraction of O2 * P(total, air) ----(1)
Thus, the partial pressure is directly proportional to the total pressure. If we consider a sealed container then, as the temperature of air increases so will its pressure. Based on equation (1) an increase in the pressure of air should also increase the partial pressure of oxygen.
Answer:
The answer is C. Organ systems please brainly me!
Explanation:
Answer:
Equilibrium shifts to the right
Explanation:
An exothermic reaction is one in which temperature is released to the environment. Hence, if the reaction vessel housing an exothermic reaction is touched after reaction completion, we will notice that the reaction vessel e.g beaker is hot.
To consider the equilibrium response to temperature changes, we need to consider if the reaction is exothermic or endothermic. In the case of this particular question, it has been established that the reaction is exothermic.
Heat is released to the surroundings as the reactants are at a higher energy level compared to the products. Hence, increasing the temperature will favor the formation of more reactants and as such, the equilibrium position will shift to the left to pave way for the formation of more reactants. Thus , more acetylene and hydrogen would be yielded
Yes, anything with carbonate, hydrogen carbonate (bicarbonate) at the end is a carbonate.
Examples:NaHCO3 (Sodium hydrogen carbonate or Sodium bicarbonate)Na2CO3 (Sodium carbonate)