Answer: 3
x
−
2
y
−
15
=
0
Explanation:
We know that,
the slope of the line
a
x
+
b
y
+
c
=
0
is
m
=
−
a
b
∴
The slope of the line
2
x
+
3
y
=
9
is
m
1
=
−
2
3
∴
The slope of the line perpendicular to
2
x
+
3
y
=
9
is
m
2
=
−
1
m
1
=
−
1
−
2
3
=
3
2
.
Hence,the equn.of line passing through
(
3
,
−
3
)
and
m
2
=
3
2
is
y
−
(
−
3
)
=
3
2
(
x
−
3
)
y
+
3
=
3
2
(
x
−
3
)
⇒
2
y
+
6
=
3
x
−
9
⇒
3
x
−
2
y
−
15
=
0
Note:
The equn.of line passing through
A
(
x
1
,
y
1
)
and
with slope
m
is
y
−
y
1
=
m
(
x
−
x
1
)3
x
−
2
y
−
15
=
0
Explanation:
We know that,
the slope of the line
a
x
+
b
y
+
c
=
0
is
m
=
−
a
b
∴
The slope of the line
2
x
+
3
y
=
9
is
m
1
=
−
2
3
∴
The slope of the line perpendicular to
2
x
+
3
y
=
9
is
m
2
=
−
1
m
1
=
−
1
−
2
3
=
3
2
.
Hence,the equn.of line passing through
(
3
,
−
3
)
and
m
2
=
3
2
is
y
−
(
−
3
)
=
3
2
(
x
−
3
)
y
+
3
=
3
2
(
x
−
3
)
⇒
2
y
+
6
=
3
x
−
9
⇒
3
x
−
2
y
−
15
=
0
Note:
The equn.of line passing through
A
(
x
1
,
y
1
)
and
with slope
m
is
y
−
y
1
=
m
(
x
−
Explanation:
the equation of a line in
slope-intercept form
is.
∙
x
y
=
m
x
+
b
where m is the slope and b the y-intercept
rearrange
2
x
+
3
y
=
9
into this form
⇒
3
y
=
−
2
x
+
9
⇒
y
=
−
2
3
x
+
3
←
in slope-intercept form
with slope m
=
−
2
3
Given a line with slope then the slope of a line
perpendicular to it is
∙
x
m
perpendicular
=
−
1
m
⇒
m
perpendicular
=
−
1
−
2
3
=
3
2
⇒
y
=
3
2
x
+
b
←
is the partial equation
to find b substitute
(
3
,
−
3
)
into the partial equation
−
3
=
9
2
+
b
⇒
b
=
−
6
2
−
9
2
=
−
15
2
⇒
y
=
3
2
x
−
15
2
←
equation of perpendicular lineExplanation:
the equation of a line in
slope-intercept form
is.
∙
x
y
=
m
x
+
b
where m is the slope and b the y-intercept
rearrange
2
x
+
3
y
=
9
into this form
⇒
3
y
=
−
2
x
+
9
⇒
y
=
−
2
3
x
+
3
←
in slope-intercept form
with slope m
=
−
2
3
Given a line with slope then the slope of a line
perpendicular to it is
∙
x
m
perpendicular
=
−
1
m
⇒
m
perpendicular
=
−
1
−
2
3
=
3
2
⇒
y
=
3
2
x
+
b
←
is the partial equation
to find b substitute
(
3
,
−
3
)
into the partial equation
−
3
=
9
2
+
b
⇒
b
=
−
6
2
−
9
2
=
−
15
2
⇒
y
=
3
2
x
−
15
2
←
equation of perpendicular line
When writing equivalent expressions, there are often several possible orders in which to simplify them. However, they will all take you to the same result as long as you do not make a mistake when using the properties. In this example, you will distribute the outer exponent first using the Power of a Product Property.
Answer:
720 miles.
Step-by-step explanation:
Going 60 miles per hour for 12 hours would amount to driving 720 miles in total.
The answer is C the third one to be specific