Answer:
83.33 cajas estándar de frambuesas y 51.67 cajas de lujo de frambuesas.
Step-by-step explanation:
Representemos el número de cajas como
A = caja estándar de frambuesas
B = caja de lujo de frambuesas
Caja estándar de frambuesas = $ 7 Caja de lujo de frambuesas = 10.
A + B = 135 ......... Ecuación 1
B = 135 - A
7A + 10B = 1100 ........... Ecuación 2
Sustituir
135 - A para B en la ecuación 2
7A + 10 (135 - A) = 1100
7A + 1350 -10A = 1100
7A - 10A = 1100-1350
-3A = - 250
A = 250/3
A = 83.33 cajas
Sustituye 83.33 por A en la ecuación 1
A + B = 135
83,33 + B = 135
B = 135 - 83.33 = 51.67 cajas
Por lo tanto, vendió,
83.33 cajas estándar de frambuesas y 51.67 cajas de lujo de frambuesas.
Answer:
- short-term: $90,000
- long-term: $70,000
Step-by-step explanation:
Let x represent the amount borrowed on the short term. Then 160000-x is the amount of the long-term note. The total interest is ...
0.11x +0.08(160000-x) = 15500
0.03x + 12800 = 15500 . . . . simplify
0.03x = 2700 . . . . . . . . . subtract 12800
x = 2700/.03 = 90,000 . . . . short-term note
160,000 -90,000 = 70,000 . . . . long-term note
The short-term note was for $90,000; the long-term note was for $70,000.
5 3/5 is a mixed number but the improper fraction would be 18/5
Answer:
- 100
- 489.190
- 10,000
- 48,919,000
Step-by-step explanation:
Each factor of 10 in the divisor causes the decimal point to move 1 place to the left.
a) The decimal point has moved 2 places to the left. The divisor is 10^2 = 100.
b) The divisor is 10^3, so the decimal point will move 3 places to the left.
489.190
c) The decimal point has moved 4 places to the left, so the divisor is 10^4 = 10,000.
d) The divisor is 10^5, so the decimal point in the quotient if 5 places to the left of where it is in the dividend. Moving the quotient's decimal point 5 places to the right gives ...
48,919,000
_____
<em>Additional comment</em>
An exponent signifies repeated multiplication. Here, we're concerned with repeatedly multiplying (or dividing) by factors of 10. The exponent indicates the number of factors: 10·10 = 10^2 = 100. It also matches the number of zeros following the 1 in the product. 1000 = 10^3 has 3 zeros after the 1, for example.