Answer:
CH2O
Explanation:
Firstly, we need to convert the masses of the elements to percentage compositions. This can be done by placing the mass of each element over the total mass multiplied by 100% . We can start with carbon.
C = 5.692/14.229 * 100 = 40%
O = 7.582/14.229 * 100 = 53.29%
H = 0.955/14.229 * 100 = 6.71%
We then proceed to divide each percentage composition by their atomic mass of 12, 16 and 1 respectively.
C = 40/12 = 3.333
O = 53.29/16 = 3.33
H = 6.71/2 = 6.71
Dividing by the smaller value which is 3.33
C = 3.33/3.33 = 1
O = 3.33/3.33= 1
H = 6.71/3.33 = 2
The empirical formula of the compound ribose is CH2O
Correct Question:
A chemist measures the enthalpy change ΔH during the following reaction: Fe(s) + 2HCl(g)-->FeCl2(s) + H2 ΔH=-157.0 kJ. Use this information to complete the table below. Round each of your answers to the nearest kJ/mol
Answer:
-314 kJ
+628 kJ
+157 kJ
Explanation:
The enthalpy change of a reaction measures the amount of heat that is lost or gained by it. If ΔH >0 the heat is gained, and the reaction is called endothermic, if ΔH<0, the heat is lost, and the reaction is called exothermic.
If the reaction is inverted, the value of ΔH is inverted too (the opposite endothermic reaction is exothermic), and if the reaction is multiplied by a constant, ΔH will be multiplied by it too.
1) 2Fe(s) + 4HCl --> 2FeCl2(s) + 2H2(g)
This reaction is the product of the given reaction by 2, so
ΔH = 2*(-157) = -314 kJ
2) 4FeCl2(s) + 4H2(g) --> 4Fe(s) + 8HCl(g)
This reaction is the inverted reaction given multiplied by 4, so
ΔH = 4*(157) = +628 kJ
3) FeCl2(s) + H2(g) --> Fe(s) + 2HCl
This reaction is the inverted reaction given, so
ΔH = +157 kJ
All of the questions here are pertaining to the colligative properties of a solution and the preparation of solutions. Maybe, it would be best if you understand the equations to be used in order to answer these questions.<span>
Freezing point depression or Boiling point elevation:
</span><span>ΔT = -K (m) (i)
</span>ΔT is the change in the freezing point or the boiling point not the freezing point/boiling point. Therefore, it should be added to the original value of the property of the solvent.
<span>
K is a constant called the molal freezing point depression constant and for the boiling point is the boiling point elevation constant. It is a property of the solvent.
</span><span>
m is the concentration of the solute in the solvent in terms of molality or kg solute/kg solvent.
</span><span>
i is the vant hoff factor which will represent the number of ions which the solute dissociates when in solution.</span>
Answer:
The heat capacity and the specific heat are related by C=cm or c=C/m. The mass m, specific heat c, change in temperature ΔT, and heat added (or subtracted) Q are related by the equation: Q=mcΔT. Values of specific heat are dependent on the properties and phase of a given substance.
Explanation:
Answer:
Explanation:
lithium: lithium is very soft, silvery metal. melting point is 180.54°C and boiling point is 1,335°C. it's density is 0.534 grams per cu.cm. oxygen: oxygen is colourless , odorless , tasteless gas