Answer:
30
Step-by-step explanation:
40/100 x 50= 20
50-20=30
Answer:
There is sufficient evidence to support the claim that the mean temperature is different from 42 deg
Step-by-step explanation:
From the given information, we are being told that:
The manufacturer of a refrigerator system for beer kegs produces refrigerators that are supposed to maintain a true mean temperature, μ, of 42°F
i. e mean μ = 42
The owner of the brewery does not agree with the refrigerator manufacturer, and claims he can prove that the true mean temperature is incorrect.
Assuming that a hypothesis test of the claim has been conducted and that the conclusion is to reject the null hypothesis, state the conclusion in nontechnical terms.
From above;
The null and the alternative hypothesis can be computed as:

Here , the hypothesis test of the claim is the alternative hypothesis.
The conclusion based on the decision rule: is to reject the null hypothesis
∴
The conclusion in non technical terms is that :
There is sufficient evidence to support the claim that the mean temperature is different from 42 deg
we have that
<span>three and one-tenth------> 3 1/10--------> (3*10+1)/10--------> 31/10-----> 3.1
the answer is 3.1 ml</span>
Answer:
1+i
Step-by-step explanation:
To find the 8th roots of unity, you have to find the trigonometric form of unity.
1. Since
then

and

This gives you 
Thus,

2. The 8th roots can be calculated using following formula:
![\sqrt[8]{z}=\{\sqrt[8]{|z|} (\cos\dfrac{\varphi+2\pi k}{8}+i\sin \dfrac{\varphi+2\pi k}{8}), k=0,\ 1,\dots,7\}.](https://tex.z-dn.net/?f=%5Csqrt%5B8%5D%7Bz%7D%3D%5C%7B%5Csqrt%5B8%5D%7B%7Cz%7C%7D%20%28%5Ccos%5Cdfrac%7B%5Cvarphi%2B2%5Cpi%20k%7D%7B8%7D%2Bi%5Csin%20%5Cdfrac%7B%5Cvarphi%2B2%5Cpi%20k%7D%7B8%7D%29%2C%20k%3D0%2C%5C%201%2C%5Cdots%2C7%5C%7D.)
Now
at k=0, ![z_0=\sqrt[8]{1} (\cos\dfrac{0+2\pi \cdot 0}{8}+i\sin \dfrac{0+2\pi \cdot 0}{8})=1\cdot (1+0\cdot i)=1;](https://tex.z-dn.net/?f=z_0%3D%5Csqrt%5B8%5D%7B1%7D%20%28%5Ccos%5Cdfrac%7B0%2B2%5Cpi%20%5Ccdot%200%7D%7B8%7D%2Bi%5Csin%20%5Cdfrac%7B0%2B2%5Cpi%20%5Ccdot%200%7D%7B8%7D%29%3D1%5Ccdot%20%281%2B0%5Ccdot%20i%29%3D1%3B)
at k=1, ![z_1=\sqrt[8]{1} (\cos\dfrac{0+2\pi \cdot 1}{8}+i\sin \dfrac{0+2\pi \cdot 1}{8})=1\cdot (\dfrac{\sqrt{2}}{2}+i\dfrac{\sqrt{2}}{2})=\dfrac{\sqrt{2}}{2}+i\dfrac{\sqrt{2}}{2};](https://tex.z-dn.net/?f=z_1%3D%5Csqrt%5B8%5D%7B1%7D%20%28%5Ccos%5Cdfrac%7B0%2B2%5Cpi%20%5Ccdot%201%7D%7B8%7D%2Bi%5Csin%20%5Cdfrac%7B0%2B2%5Cpi%20%5Ccdot%201%7D%7B8%7D%29%3D1%5Ccdot%20%28%5Cdfrac%7B%5Csqrt%7B2%7D%7D%7B2%7D%2Bi%5Cdfrac%7B%5Csqrt%7B2%7D%7D%7B2%7D%29%3D%5Cdfrac%7B%5Csqrt%7B2%7D%7D%7B2%7D%2Bi%5Cdfrac%7B%5Csqrt%7B2%7D%7D%7B2%7D%3B)
at k=2, ![z_2=\sqrt[8]{1} (\cos\dfrac{0+2\pi \cdot 2}{8}+i\sin \dfrac{0+2\pi \cdot 2}{8})=1\cdot (0+1\cdot i)=i;](https://tex.z-dn.net/?f=z_2%3D%5Csqrt%5B8%5D%7B1%7D%20%28%5Ccos%5Cdfrac%7B0%2B2%5Cpi%20%5Ccdot%202%7D%7B8%7D%2Bi%5Csin%20%5Cdfrac%7B0%2B2%5Cpi%20%5Ccdot%202%7D%7B8%7D%29%3D1%5Ccdot%20%280%2B1%5Ccdot%20i%29%3Di%3B)
at k=3, ![z_3=\sqrt[8]{1} (\cos\dfrac{0+2\pi \cdot 3}{8}+i\sin \dfrac{0+2\pi \cdot 3}{8})=1\cdot (-\dfrac{\sqrt{2}}{2}+i\dfrac{\sqrt{2}}{2})=-\dfrac{\sqrt{2}}{2}+i\dfrac{\sqrt{2}}{2};](https://tex.z-dn.net/?f=z_3%3D%5Csqrt%5B8%5D%7B1%7D%20%28%5Ccos%5Cdfrac%7B0%2B2%5Cpi%20%5Ccdot%203%7D%7B8%7D%2Bi%5Csin%20%5Cdfrac%7B0%2B2%5Cpi%20%5Ccdot%203%7D%7B8%7D%29%3D1%5Ccdot%20%28-%5Cdfrac%7B%5Csqrt%7B2%7D%7D%7B2%7D%2Bi%5Cdfrac%7B%5Csqrt%7B2%7D%7D%7B2%7D%29%3D-%5Cdfrac%7B%5Csqrt%7B2%7D%7D%7B2%7D%2Bi%5Cdfrac%7B%5Csqrt%7B2%7D%7D%7B2%7D%3B)
at k=4, ![z_4=\sqrt[8]{1} (\cos\dfrac{0+2\pi \cdot 4}{8}+i\sin \dfrac{0+2\pi \cdot 4}{8})=1\cdot (-1+0\cdot i)=-1;](https://tex.z-dn.net/?f=z_4%3D%5Csqrt%5B8%5D%7B1%7D%20%28%5Ccos%5Cdfrac%7B0%2B2%5Cpi%20%5Ccdot%204%7D%7B8%7D%2Bi%5Csin%20%5Cdfrac%7B0%2B2%5Cpi%20%5Ccdot%204%7D%7B8%7D%29%3D1%5Ccdot%20%28-1%2B0%5Ccdot%20i%29%3D-1%3B)
at k=5, ![z_5=\sqrt[8]{1} (\cos\dfrac{0+2\pi \cdot 5}{8}+i\sin \dfrac{0+2\pi \cdot 5}{8})=1\cdot (-\dfrac{\sqrt{2}}{2}-i\dfrac{\sqrt{2}}{2})=-\dfrac{\sqrt{2}}{2}-i\dfrac{\sqrt{2}}{2};](https://tex.z-dn.net/?f=z_5%3D%5Csqrt%5B8%5D%7B1%7D%20%28%5Ccos%5Cdfrac%7B0%2B2%5Cpi%20%5Ccdot%205%7D%7B8%7D%2Bi%5Csin%20%5Cdfrac%7B0%2B2%5Cpi%20%5Ccdot%205%7D%7B8%7D%29%3D1%5Ccdot%20%28-%5Cdfrac%7B%5Csqrt%7B2%7D%7D%7B2%7D-i%5Cdfrac%7B%5Csqrt%7B2%7D%7D%7B2%7D%29%3D-%5Cdfrac%7B%5Csqrt%7B2%7D%7D%7B2%7D-i%5Cdfrac%7B%5Csqrt%7B2%7D%7D%7B2%7D%3B)
at k=6, ![z_6=\sqrt[8]{1} (\cos\dfrac{0+2\pi \cdot 6}{8}+i\sin \dfrac{0+2\pi \cdot 6}{8})=1\cdot (0-1\cdot i)=-i;](https://tex.z-dn.net/?f=z_6%3D%5Csqrt%5B8%5D%7B1%7D%20%28%5Ccos%5Cdfrac%7B0%2B2%5Cpi%20%5Ccdot%206%7D%7B8%7D%2Bi%5Csin%20%5Cdfrac%7B0%2B2%5Cpi%20%5Ccdot%206%7D%7B8%7D%29%3D1%5Ccdot%20%280-1%5Ccdot%20i%29%3D-i%3B)
at k=7, ![z_7=\sqrt[8]{1} (\cos\dfrac{0+2\pi \cdot 7}{8}+i\sin \dfrac{0+2\pi \cdot 7}{8})=1\cdot (\dfrac{\sqrt{2}}{2}-i\dfrac{\sqrt{2}}{2})=\dfrac{\sqrt{2}}{2}-i\dfrac{\sqrt{2}}{2};](https://tex.z-dn.net/?f=z_7%3D%5Csqrt%5B8%5D%7B1%7D%20%28%5Ccos%5Cdfrac%7B0%2B2%5Cpi%20%5Ccdot%207%7D%7B8%7D%2Bi%5Csin%20%5Cdfrac%7B0%2B2%5Cpi%20%5Ccdot%207%7D%7B8%7D%29%3D1%5Ccdot%20%28%5Cdfrac%7B%5Csqrt%7B2%7D%7D%7B2%7D-i%5Cdfrac%7B%5Csqrt%7B2%7D%7D%7B2%7D%29%3D%5Cdfrac%7B%5Csqrt%7B2%7D%7D%7B2%7D-i%5Cdfrac%7B%5Csqrt%7B2%7D%7D%7B2%7D%3B)
The 8th roots are

Option C is icncorrect.
Answer:
well....
Step-by-step explanation:
trow the apple