1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
larisa [96]
3 years ago
9

A turtle pack that normally sells for $39 is on sale for 33% off. Find the

Mathematics
1 answer:
Paul [167]3 years ago
3 0

Answer:

67% discounted

26

555.2

Step-by-step explanation:

39 - 13 = 26

48 x 1.15 = 55.2

You might be interested in
By use of technology, we investigated Mary’s investment and created the model, M(x) = 3.03(1.28)2x, in thousands of dollars. Wha
aleksandr82 [10.1K]
The initial investment was 3.03 because this is the value that does not change and comes before the value with the exponent "2x" is mentioned.
6 0
3 years ago
Read 2 more answers
Sean bought a 6 inch sub. He ate 3 3/4 inches. How much sub does he have left in the simplest form.
irinina [24]

Answer: 2 1/2

hope this helps

4 0
3 years ago
The equation of a circle is given below.
BARSIC [14]

<u>Given</u>:

The equation of the circle is x^2+(y+4)^2=64

We need to determine the center and radius of the circle.

<u>Center</u>:

The general form of the equation of the circle is (x-h)^2+(y-k)^2=r^2

where (h,k) is the center of the circle and r is the radius.

Let us compare the general form of the equation of the circle with the given equation x^2+(y+4)^2=64 to determine the center.

The given equation can be written as,

(x-0)^2+(y+4)^2=64

Comparing the two equations, we get;

(h,k) = (0,-4)

Therefore, the center of the circle is (0,-4)

<u>Radius:</u>

Let us compare the general form of the equation of the circle with the given equation x^2+(y+4)^2=64 to determine the radius.

Hence, the given equation can be written as,

x^2+(y+4)^2=8^2

Comparing the two equation, we get;

r^2=8^2

 r=8

Thus, the radius of the circle is 8

3 0
3 years ago
Cual es el resultado de simplificar. Adjunto foto
Margaret [11]

Answer:

⣿⣯⣿⣟⣟⡼⣿⡼⡿⣷⣿⣿⣿⠽⡟⢋⣿⣿⠘⣼⣷⡟⠻⡿⣷⡼⣝⡿⡾⣿ ⣿⣿⣿⣿⢁⣵⡇⡟⠀⣿⣿⣿⠇⠀⡇⣴⣿⣿⣧⣿⣿⡇⠀⢣⣿⣷⣀⡏⢻⣿ ⣿⣿⠿⣿⣿⣿⠷⠁⠀⠛⠛⠋⠀⠂⠹⠿⠿⠿⠿⠿⠉⠁⠀⠘⠛⠛⠛⠃⢸⣯ ⣿⡇⠀⣄⣀⣀⣈⣁⠈⠉⠃⠀⠀⠀⠀⠀⠀⠀⠀⠠⠎⠈⠀⣀⣁⣀⣀⡠⠈⠉ ⣿⣯⣽⡿⢟⡿⠿⠛⠛⠿⣶⣄⠀⠀⠀⠀⠀⠀⠈⢠⣴⣾⠛⠛⠿⠻⠛⠿⣷⣶ ⣿⣿⣿⠀⠀⠀⣿⡿⣶⣿⣫⠉⠀⠀⠀⠀⠀⠀⠀⠈⠰⣿⠿⠾⣿⡇⠀⠀⢺⣿ ⣿⣿⠻⡀⠀⠀⠙⠏⠒⡻⠃⠀⠀⠀⠀⣀⠀⠀⠀⠀⠀⠐⡓⢚⠟⠁⠀⠀⡾⢫ ⣿⣿⠀⠀⡀⠀⠀⡈⣉⡀⡠⣐⣅⣽⣺⣿⣯⡡⣴⣴⣔⣠⣀⣀⡀⢀⡀⡀⠀⣸ ⣿⣿⣷⣿⣟⣿⡿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⢻⢾⣷⣿ ⣿⣿⣟⠫⡾⠟⠫⢾⠯⡻⢟⡽⢶⢿⣿⣿⡛⠕⠎⠻⠝⠪⢖⠝⠟⢫⠾⠜⢿⣿ ⣿⣿⣿⠉⠀⠀⠀⠀⠈⠀⠀⠀⠀⣰⣋⣀⣈⣢⠀⠀⠀⠀⠀⠀⠀⠀⠀⣐⢸⣿ ⣿⣿⣿⣆⠀⠀⠀⠀⠀⠀⠀⠀⢰⣿⣿⣿⣿⣿⣧⠀⠀⠀⠀⠀⠀⠀⠀⢀⣾⣿ ⣿⣿⣿⣿⣦⡔⠀⠀⠀⠀⠀⠀⢻⣿⡿⣿⣿⢽⣿⠀⠀⠀⠀⠀⠀⠀⣠⣾⣿⣿ ⣿⣿⣿⣿⣿⣿⣶⣤⣀⠀⠀⠀⠘⠛⢅⣙⣙⠿⠉⠀⠀⠀⢀⣠⣴⣿⣿⣿⣿⣿ ⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣶⣤⣄⣅⠀⠓⠀⠀⣀⣠⣴⣺⣿⣿⣿⣿⣿⣿⣿⣿

Step-by-step explanation:

i nu speak that language

6 0
2 years ago
<img src="https://tex.z-dn.net/?f=%5Cint%5Climits%5Ea_b%20%7B%281-x%5E%7B2%7D%20%29%5E%7B3%2F2%7D%20%7D%20%5C%2C%20dx" id="TexFo
Ludmilka [50]

Answer:\displaystyle \int\limits^a_b {(1 - x^2)^\Big{\frac{3}{2}}} \, dx = \frac{3arcsin(a) + 2a(1 - a^2)^\Big{\frac{3}{2}} + 3a\sqrt{1 - a^2}}{8} - \frac{3arcsin(b) + 2b(1 - b^2)^\Big{\frac{3}{2}} + 3b\sqrt{1 - b^2}}{8}General Formulas and Concepts:

<u>Pre-Calculus</u>

  • Trigonometric Identities

<u>Calculus</u>

Differentiation

  • Derivatives
  • Derivative Notation

Integration

  • Integrals
  • Definite/Indefinite Integrals
  • Integration Constant C

Integration Rule [Reverse Power Rule]:                                                               \displaystyle \int {x^n} \, dx = \frac{x^{n + 1}}{n + 1} + C

Integration Rule [Fundamental Theorem of Calculus 1]:                                    \displaystyle \int\limits^b_a {f(x)} \, dx = F(b) - F(a)

U-Substitution

  • Trigonometric Substitution

Reduction Formula:                                                                                               \displaystyle \int {cos^n(x)} \, dx = \frac{n - 1}{n}\int {cos^{n - 2}(x)} \, dx + \frac{cos^{n - 1}(x)sin(x)}{n}

Step-by-step explanation:

<u>Step 1: Define</u>

<em>Identify</em>

\displaystyle \int\limits^a_b {(1 - x^2)^\Big{\frac{3}{2}}} \, dx

<u>Step 2: Integrate Pt. 1</u>

<em>Identify variables for u-substitution (trigonometric substitution).</em>

  1. Set <em>u</em>:                                                                                                             \displaystyle x = sin(u)
  2. [<em>u</em>] Differentiate [Trigonometric Differentiation]:                                         \displaystyle dx = cos(u) \ du
  3. Rewrite <em>u</em>:                                                                                                       \displaystyle u = arcsin(x)

<u>Step 3: Integrate Pt. 2</u>

  1. [Integral] Trigonometric Substitution:                                                           \displaystyle \int\limits^a_b {(1 - x^2)^\Big{\frac{3}{2}}} \, dx = \int\limits^a_b {cos(u)[1 - sin^2(u)]^\Big{\frac{3}{2}} \, du
  2. [Integrand] Rewrite:                                                                                       \displaystyle \int\limits^a_b {(1 - x^2)^\Big{\frac{3}{2}}} \, dx = \int\limits^a_b {cos(u)[cos^2(u)]^\Big{\frac{3}{2}} \, du
  3. [Integrand] Simplify:                                                                                       \displaystyle \int\limits^a_b {(1 - x^2)^\Big{\frac{3}{2}}} \, dx = \int\limits^a_b {cos^4(u)} \, du
  4. [Integral] Reduction Formula:                                                                       \displaystyle \int\limits^a_b {(1 - x^2)^\Big{\frac{3}{2}}} \, dx = \frac{4 - 1}{4}\int \limits^a_b {cos^{4 - 2}(x)} \, dx + \frac{cos^{4 - 1}(u)sin(u)}{4} \bigg| \limits^a_b
  5. [Integral] Simplify:                                                                                         \displaystyle \int\limits^a_b {(1 - x^2)^\Big{\frac{3}{2}}} \, dx = \frac{cos^3(u)sin(u)}{4} \bigg| \limits^a_b + \frac{3}{4}\int\limits^a_b {cos^2(u)} \, du
  6. [Integral] Reduction Formula:                                                                          \displaystyle \int\limits^a_b {(1 - x^2)^\Big{\frac{3}{2}}} \, dx = \frac{cos^3(u)sin(u)}{4} \bigg|\limits^a_b + \frac{3}{4} \bigg[ \frac{2 - 1}{2}\int\limits^a_b {cos^{2 - 2}(u)} \, du + \frac{cos^{2 - 1}(u)sin(u)}{2} \bigg| \limits^a_b \bigg]
  7. [Integral] Simplify:                                                                                         \displaystyle \int\limits^a_b {(1 - x^2)^\Big{\frac{3}{2}}} \, dx = \frac{cos^3(u)sin(u)}{4} \bigg| \limits^a_b + \frac{3}{4} \bigg[ \frac{1}{2}\int\limits^a_b {} \, du + \frac{cos(u)sin(u)}{2} \bigg| \limits^a_b \bigg]
  8. [Integral] Reverse Power Rule:                                                                     \displaystyle \int\limits^a_b {(1 - x^2)^\Big{\frac{3}{2}}} \, dx = \frac{cos^3(u)sin(u)}{4} \bigg| \limits^a_b + \frac{3}{4} \bigg[ \frac{1}{2}(u) \bigg| \limits^a_b + \frac{cos(u)sin(u)}{2} \bigg| \limits^a_b \bigg]
  9. Simplify:                                                                                                         \displaystyle \int\limits^a_b {(1 - x^2)^\Big{\frac{3}{2}}} \, dx = \frac{cos^3(u)sin(u)}{4} \bigg| \limits^a_b + \frac{3cos(u)sin(u)}{8} \bigg| \limits^a_b + \frac{3}{8}(u) \bigg| \limits^a_b
  10. Back-Substitute:                                                                                               \displaystyle \int\limits^a_b {(1 - x^2)^\Big{\frac{3}{2}}} \, dx = \frac{cos^3(arcsin(x))sin(arcsin(x))}{4} \bigg| \limits^a_b + \frac{3cos(arcsin(x))sin(arcsin(x))}{8} \bigg| \limits^a_b + \frac{3}{8}(arcsin(x)) \bigg| \limits^a_b
  11. Simplify:                                                                                                         \displaystyle \int\limits^a_b {(1 - x^2)^\Big{\frac{3}{2}}} \, dx = \frac{3arcsin(x)}{8} \bigg| \limits^a_b + \frac{x(1 - x^2)^\Big{\frac{3}{2}}}{4} \bigg| \limits^a_b + \frac{3x\sqrt{1 - x^2}}{8} \bigg| \limits^a_b
  12. Rewrite:                                                                                                         \displaystyle \int\limits^a_b {(1 - x^2)^\Big{\frac{3}{2}}} \, dx = \frac{3arcsin(x) + 2x(1 - x^2)^\Big{\frac{3}{2}} + 3x\sqrt{1 - x^2}}{8} \bigg| \limits^a_b
  13. Evaluate [Integration Rule - Fundamental Theorem of Calculus 1]:              \displaystyle \int\limits^a_b {(1 - x^2)^\Big{\frac{3}{2}}} \, dx = \frac{3arcsin(a) + 2a(1 - a^2)^\Big{\frac{3}{2}} + 3a\sqrt{1 - a^2}}{8} - \frac{3arcsin(b) + 2b(1 - b^2)^\Big{\frac{3}{2}} + 3b\sqrt{1 - b^2}}{8}

Topic: AP Calculus AB/BC (Calculus I/I + II)

Unit: Integration

Book: College Calculus 10e

8 0
3 years ago
Read 2 more answers
Other questions:
  • Compute the amount of interest earned in the following simple interest problem. A deposit of $4,500 at 5% for 3 years:
    14·1 answer
  • Reflectional symmetry is the quality a design has if it maintains __ when it is reflected across an axis or line of symmetry
    10·1 answer
  • Which words have horizontal reflection symmetry? Select all that apply.
    9·1 answer
  • How do I do this :'(
    5·2 answers
  • List the coefficients in the expression.
    9·2 answers
  • Please answer! Will give points! Please help!
    5·1 answer
  • Find (fog)(x) when f(x)=x^2-7x+12 and g(x)=3/x^2-16
    15·1 answer
  • - Round each number to four decimal places: a. 5.16 b. 5.27​
    15·1 answer
  • Which is the correct solution for the expansion 3+5^2?
    15·2 answers
  • MATCH EACH PLease quick
    8·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!