Answer:
<em>The age at which both companies charge the same premium is 44 years</em>
Step-by-step explanation:
<u>Graph Solution to System of Equations</u>
One approach to solving systems of equations of two variables is the graph method.
Both equations are plotted in the same grid and we find the intersection point(s) of both graphs. Those are the feasible solutions.
The annual premium p as a function of the client's age a for two companies are given as:
Company A: p= 2a+24
Company B: p= 2.25a+13
The graphs of both functions are shown in the image below.
The red line indicates the formula for Company A and the blue line indicates the formula for Company B.
It can be seen that both lines intersect in the point with approximate coordinates of (44,112).
The age at which both companies charge the same premium is 44 years
We find the first differences between terms:
7-4=3; 12-7=5; 19-12=7; 28-19=9.
Since these are different, this is not linear.
We now find the second differences:
5-3=2; 7-5=2; 9-7=2. Then:
Since these are the same, this sequence is quadratic.
We use (1/2a)n², where a is the second difference:
(1/2*2)n²=1n².
We now use the term number of each term for n:
4 is the 1st term; 1*1²=1.
7 is the 2nd term; 1*2²=4.
12 is the 3rd term; 1*3²=9.
19 is the 4th term; 1*4²=16.
28 is the 5th term: 1*5²=25.
Now we find the difference between the actual terms of the sequence and the numbers we just found:
4-1=3; 7-4=3; 12-9=3; 19-16=3; 28-25=3.
Since this is constant, the sequence is in the form (1/2a)n²+d;
in our case, 1n²+d, and since d=3, 1n²+3.
The correct answer is n²+3
I think it's 23500, 45300, 2500
"Percent" means literally per one-hundred so
0.12/100
0.0012
I think its (6.5+3.25)÷0.2=48.75
dont quote me on that, I tried and I'm not the best at math lol.