Answer:
![\sqrt[4] {x^3}](https://tex.z-dn.net/?f=%5Csqrt%5B4%5D%20%7Bx%5E3%7D)
Step-by-step explanation:
At this point, we can transform the square root into a fourth root by squaring the argument, and bring into the other root:
![\sqrt x \cdot \sqrt[4] x =\sqrt [4] {x^2} \cdot \sqrt[4] x = \sqrt[4]{x^2\cdot x} = \sqrt[4] {x^3}](https://tex.z-dn.net/?f=%5Csqrt%20x%20%5Ccdot%20%5Csqrt%5B4%5D%20x%20%3D%5Csqrt%20%5B4%5D%20%7Bx%5E2%7D%20%5Ccdot%20%5Csqrt%5B4%5D%20x%20%3D%20%5Csqrt%5B4%5D%7Bx%5E2%5Ccdot%20x%7D%20%3D%20%5Csqrt%5B4%5D%20%7Bx%5E3%7D)
Alternatively, if you're allowed to use rational exponents, we can convert everything:
![\sqrt x \cdot \sqrt[4] x = x^{\frac12} \cdot x^\frac14 = x^{\frac12 +\frac14}= x^{\frac24 +\frac14}= x^\frac34 = \sqrt[4] {x^3}](https://tex.z-dn.net/?f=%5Csqrt%20x%20%5Ccdot%20%5Csqrt%5B4%5D%20x%20%3D%20x%5E%7B%5Cfrac12%7D%20%5Ccdot%20x%5E%5Cfrac14%20%3D%20x%5E%7B%5Cfrac12%20%2B%5Cfrac14%7D%3D%20x%5E%7B%5Cfrac24%20%2B%5Cfrac14%7D%3D%20x%5E%5Cfrac34%20%3D%20%5Csqrt%5B4%5D%20%7Bx%5E3%7D)
You would substitute the given value of “y” into the equation of -14x+y=16
-14x+5x-2=16
Then you would solve for “x”
x=2
You would then substitute the value of “x” into the equation to solve for “y”
y=5(2)-2
Which would then give you a value for “y”
y=12
So the answer is (2,12)
Answer:
Correct choice is A
Step-by-step explanation:
Two vertices of the rectangle have coordinates A(-1, 5) and B(2, 1). If rectangle sides are parallel to the axes, then two remaining vertices have coordinates C(-1,1) and D(2,5) (see attached diagram for details).
Find the length and the width:

Then the length is 1 unit longer than the width.
The slopes of the original function y = |x| are m = 1 and m = -1 (m is the variable used to represent slope).
when you add a coefficient (number) in front of |x|, it will either make the slopes steeper or more flat. the larger the value of the coefficient, the steeper the slope will be (vice versa for a coefficient smaller than 1, which would make the slope more flat than the parent(original) function).
because these are absolute value functions, they will have two slopes. one slope for the end going up from left to right, and one for the end going down from left to right. this means that one slope must be positive and the other slope must be negative for each function.
with this in mind, the slopes of y = 2|x| are m = 2 and m = -2. the coefficient of 2 narrows the function by a factor of 2 (it is twice as narrow as the parent function). the same rules apply to y = 4|x| with the slopes of this function as m = -4 and m = 4 (it is 4 times narrower than the parent function).
with the fraction coefficients, the function is being widened. therefore, the slopes of y = 1/2 |x| are m = -1/2 and m = 1/2. the slopes of y = 1/5 |x| are m = -1/5 and m = 1/5.
Answer: x= -6
Step-by-step explanation:
It will be a vertical line parallel to the y-axis at -6 on the x-axis. It passes through every y-value, including the given -5 and -2